

Lecture 29

Greedy: Activity-Selection Problem (contd.), MST

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

i	0	1	2	3	4	5	6	7	8	9	10	11	12
s_i	0	1	3	0	5	3	5	6	7	8	2	12	16
f_i	0	4	5	6	7	9	9	10	11	12	14	16	16

Greedy Algorithm for Activity-Selection

i	0	1	2	3	4	5	6	7	8	9	10	11	12
s_i	0	1	3	0	5	3	5	6	7	8	2	12	16
f_i	0	4	5	6	7	9	9	10	11	12	14	16	16

Let's try to find $A_{0,12}$ using **greedy** choices!

Greedy Algorithm for Activity-Selection

$A_{0,12}$

↓

i	0	1	2	3	4	5	6	7	8	9	10	11	12
s_i	0	1	3	0	5	3	5	6	7	8	2	12	16
f_i	0	4	5	6	7	9	9	10	11	12	14	16	16

Greedy Algorithm for Activity-Selection

$A_{0,12}$

\downarrow

$A_{0,1} \cup \{a_1\} \cup A_{1,12}$

i	0	1	2	3	4	5	6	7	8	9	10	11	12
s_i	0	1	3	0	5	3	5	6	7	8	2	12	16
f_i	0	4	5	6	7	9	9	10	11	12	14	16	16

Greedy Algorithm for Activity-Selection

i	0	1	2	3	4	5	6	7	8	9	10	11	12
s_i	0	1	3	0	5	3	5	6	7	8	2	12	16
f_i	0	4	5	6	7	9	9	10	11	12	14	16	16

Greedy Algorithm for Activity-Selection

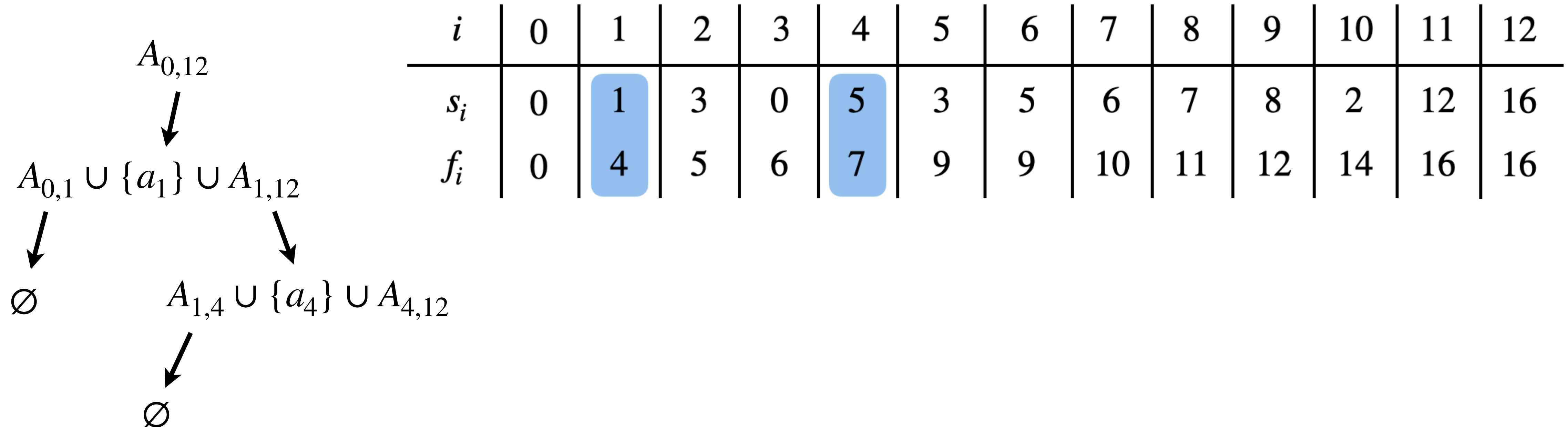
Diagram illustrating the greedy algorithm for activity selection:

The algorithm starts with the set $A_{0,12}$ and iteratively removes the first activity a_1 , resulting in the sets $A_{0,1} \cup \{a_1\} \cup A_{1,12}$, \emptyset , and finally $A_{1,4} \cup \{a_4\} \cup A_{4,12}$.

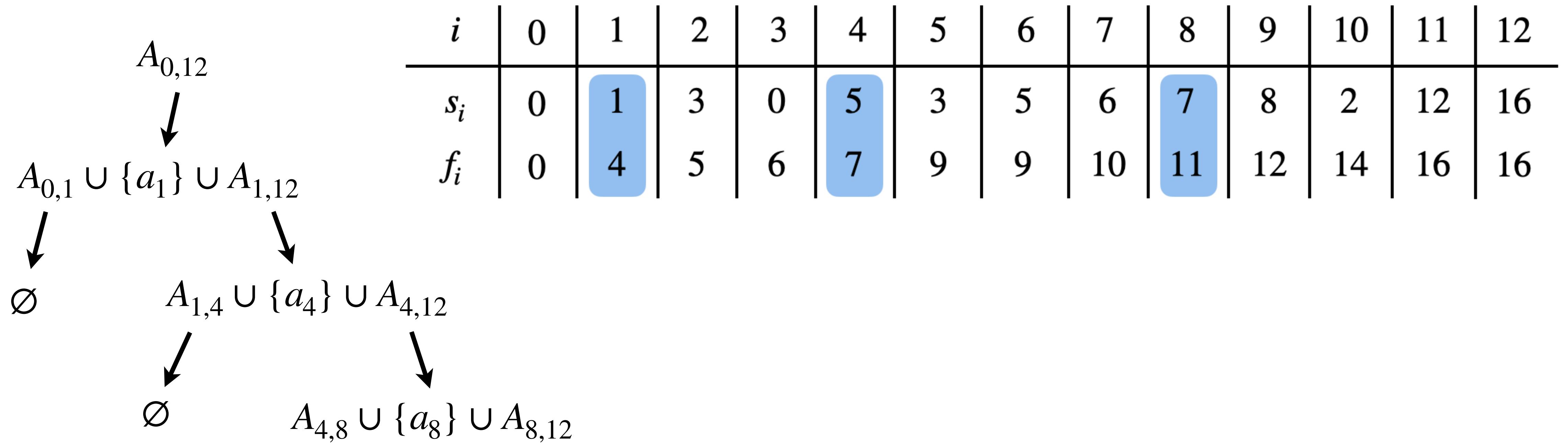
The activity selection table is as follows:

i	0	1	2	3	4	5	6	7	8	9	10	11	12
s_i	0	1	3	0	5	3	5	6	7	8	2	12	16
f_i	0	4	5	6	7	9	9	10	11	12	14	16	16

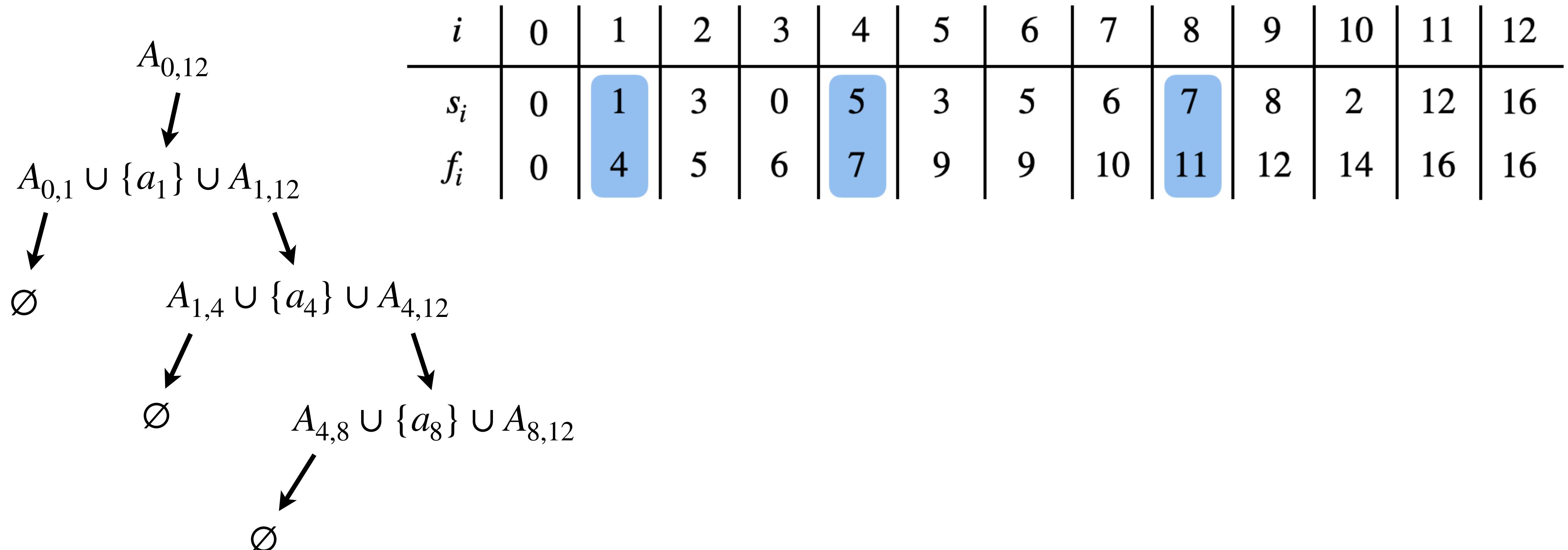
Greedy Algorithm for Activity-Selection



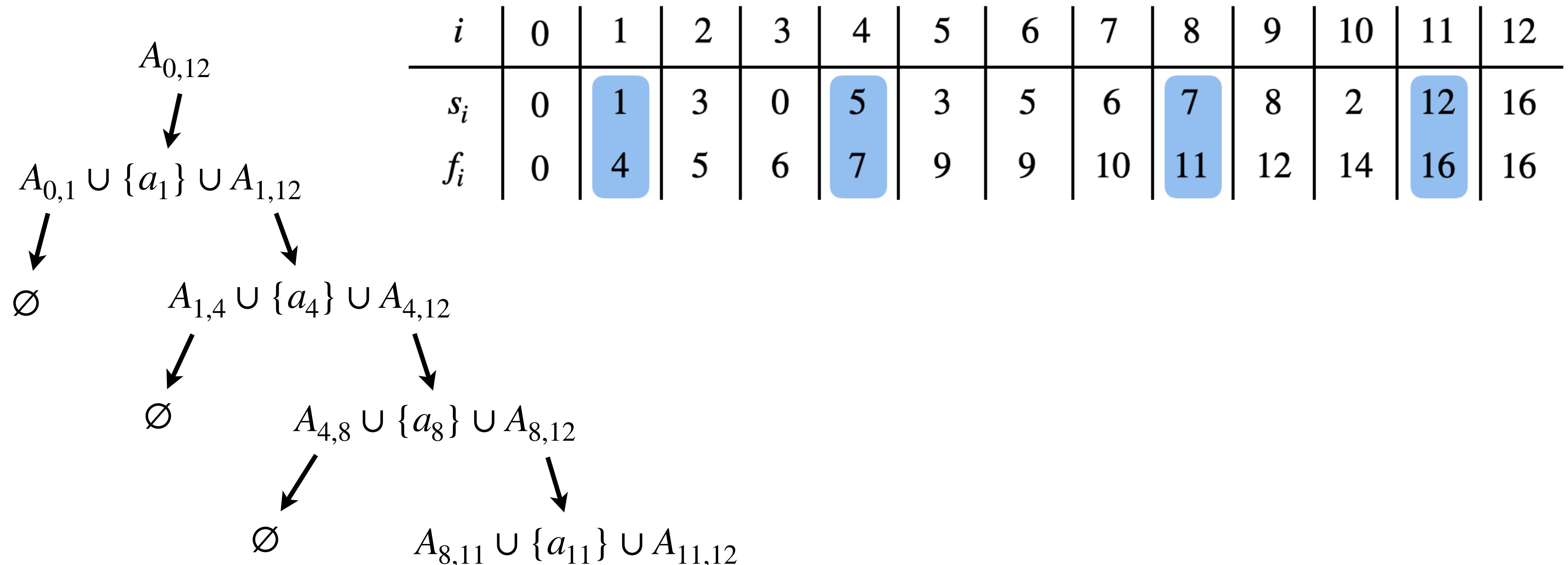
Greedy Algorithm for Activity-Selection



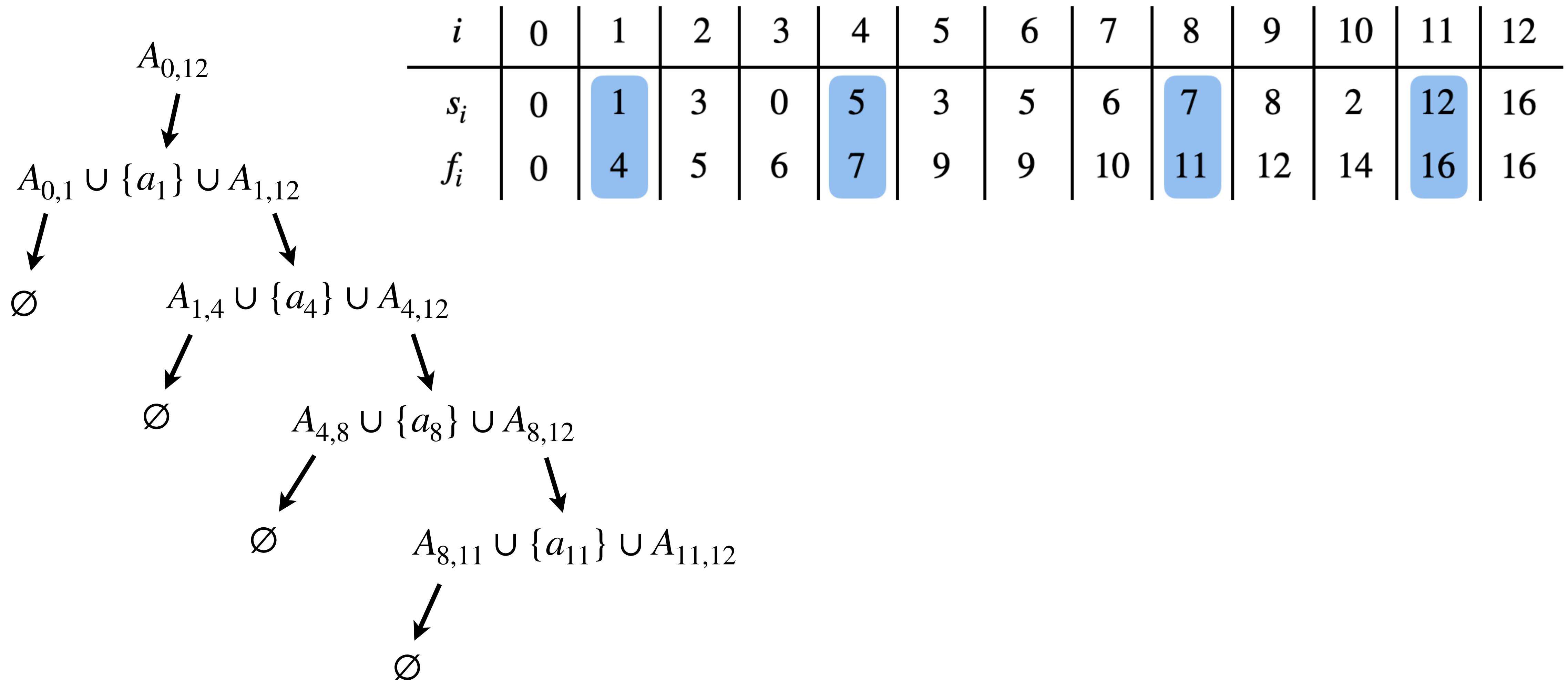
Greedy Algorithm for Activity-Selection



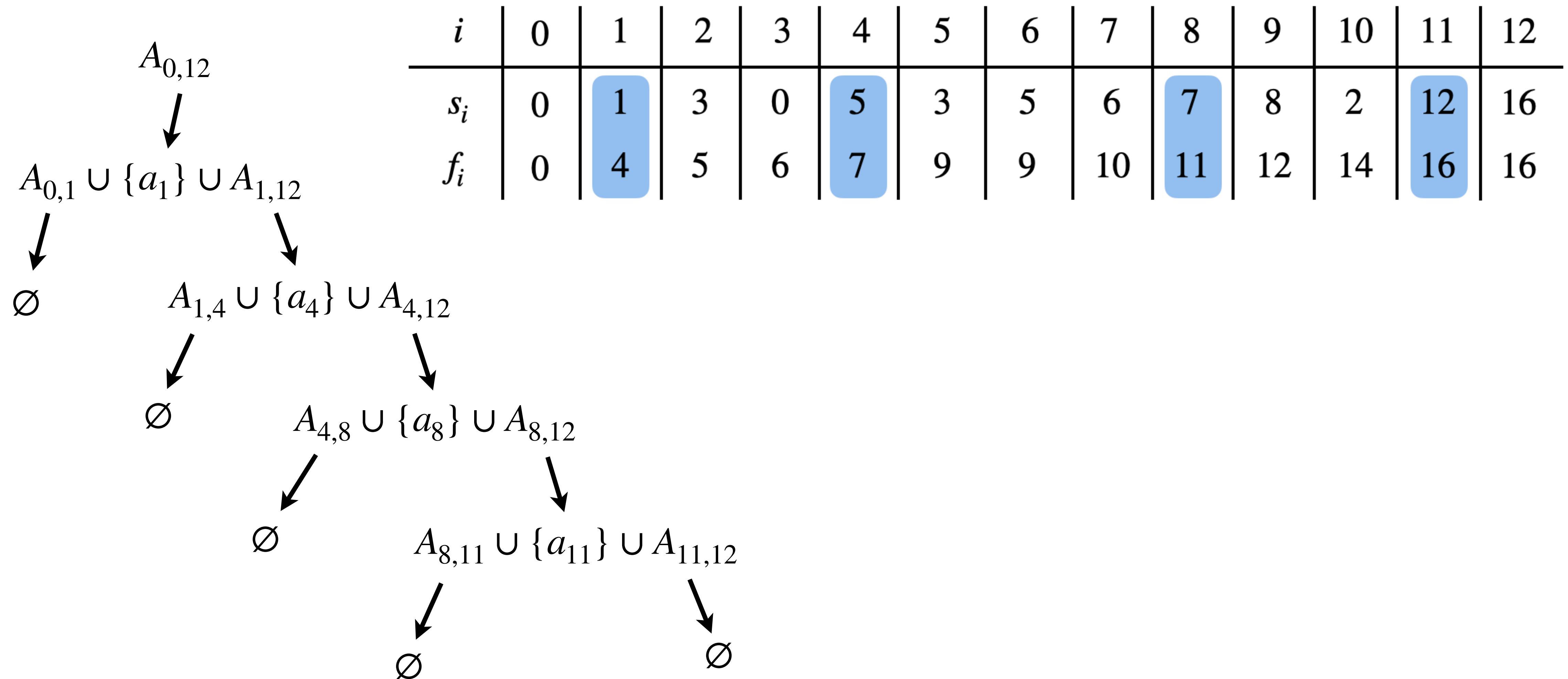
Greedy Algorithm for Activity-Selection



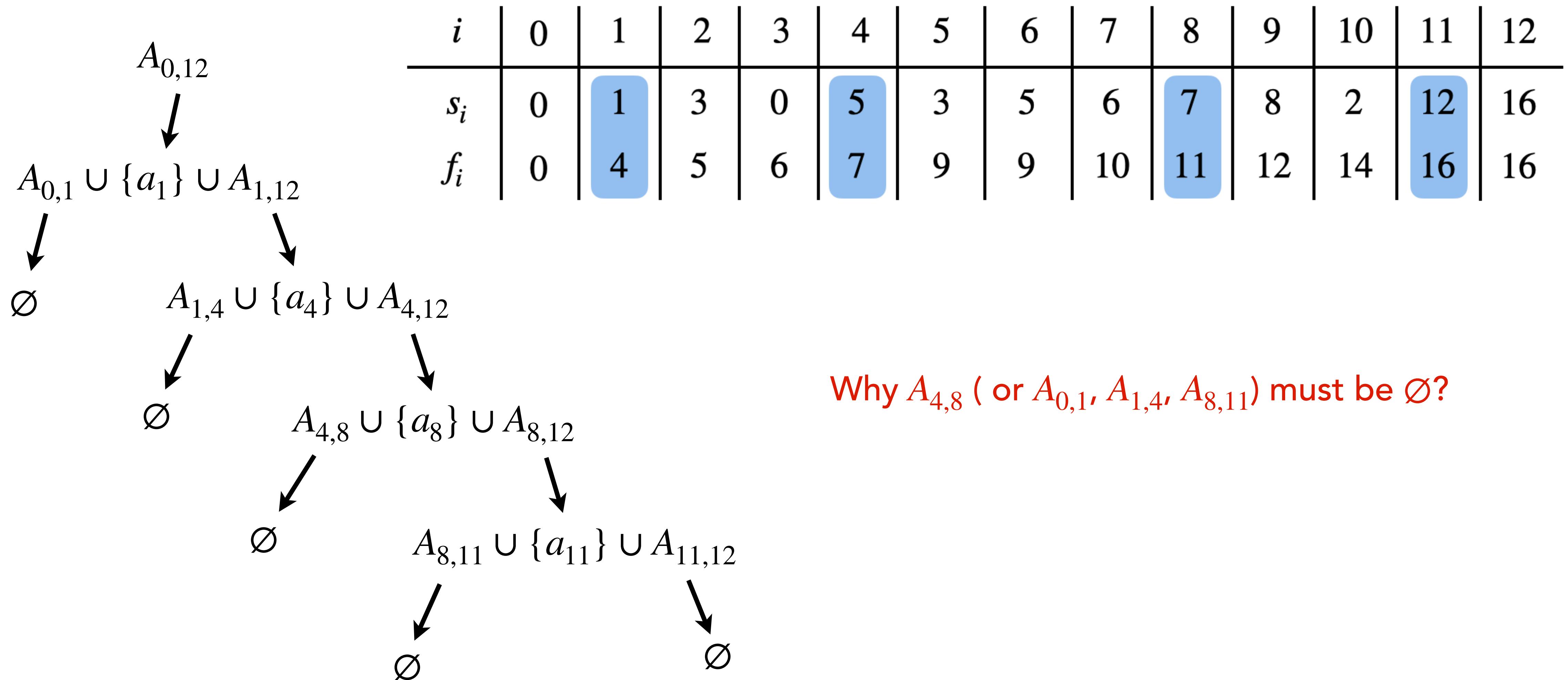
Greedy Algorithm for Activity-Selection



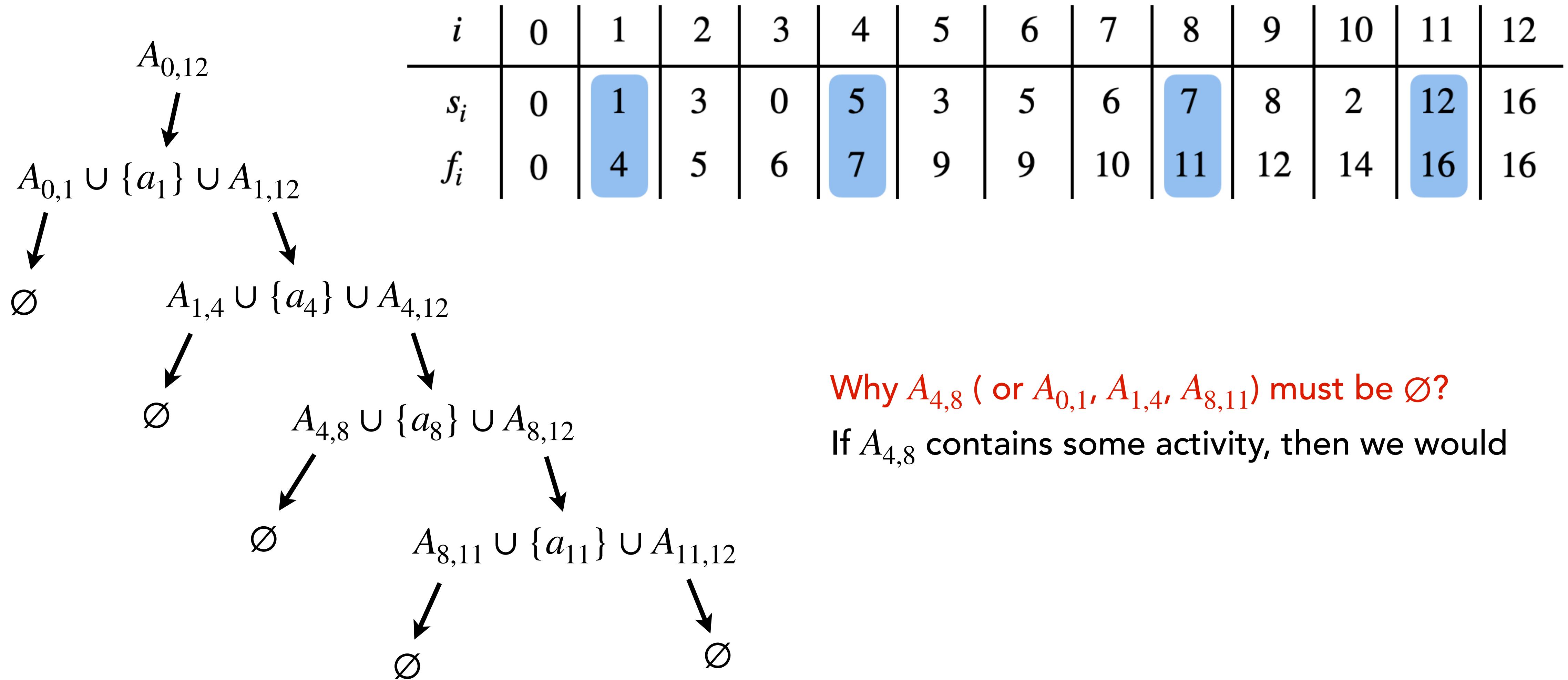
Greedy Algorithm for Activity-Selection



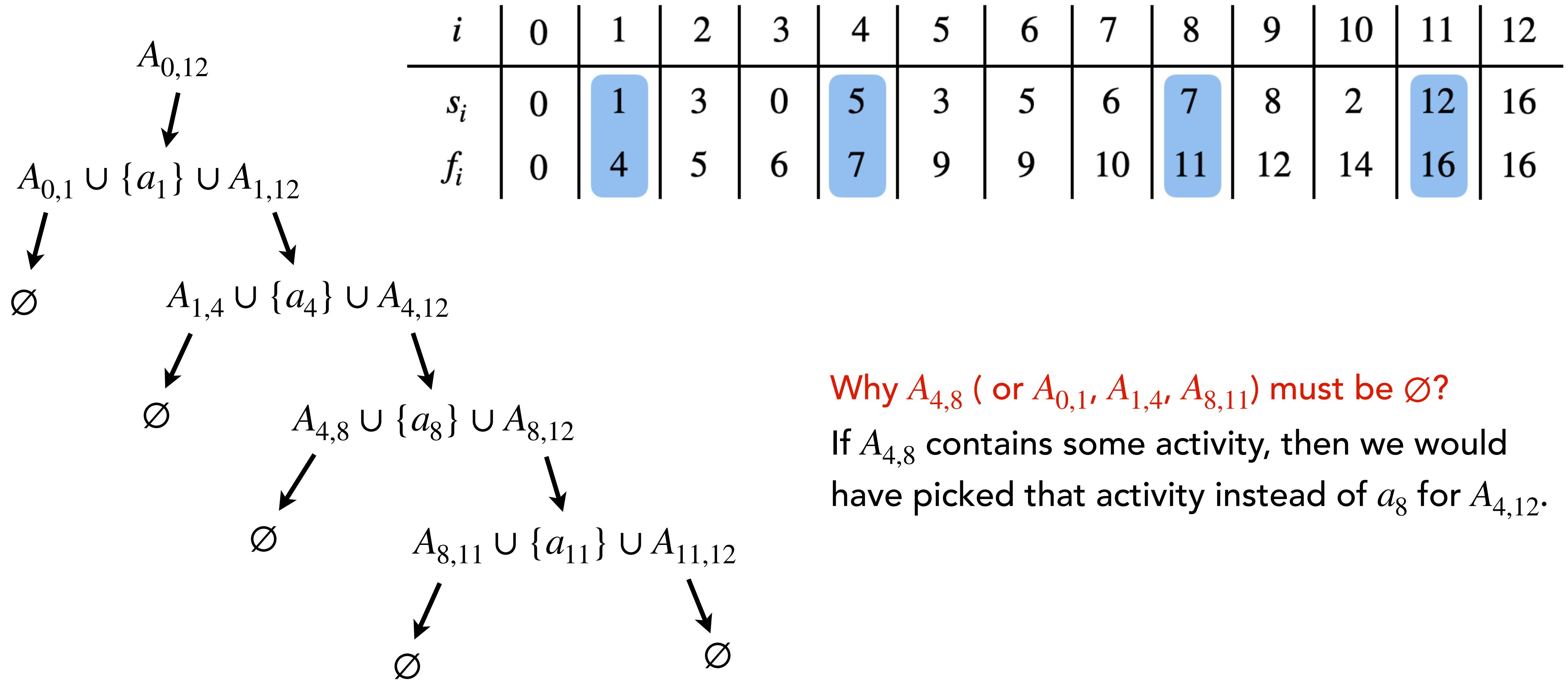
Greedy Algorithm for Activity-Selection



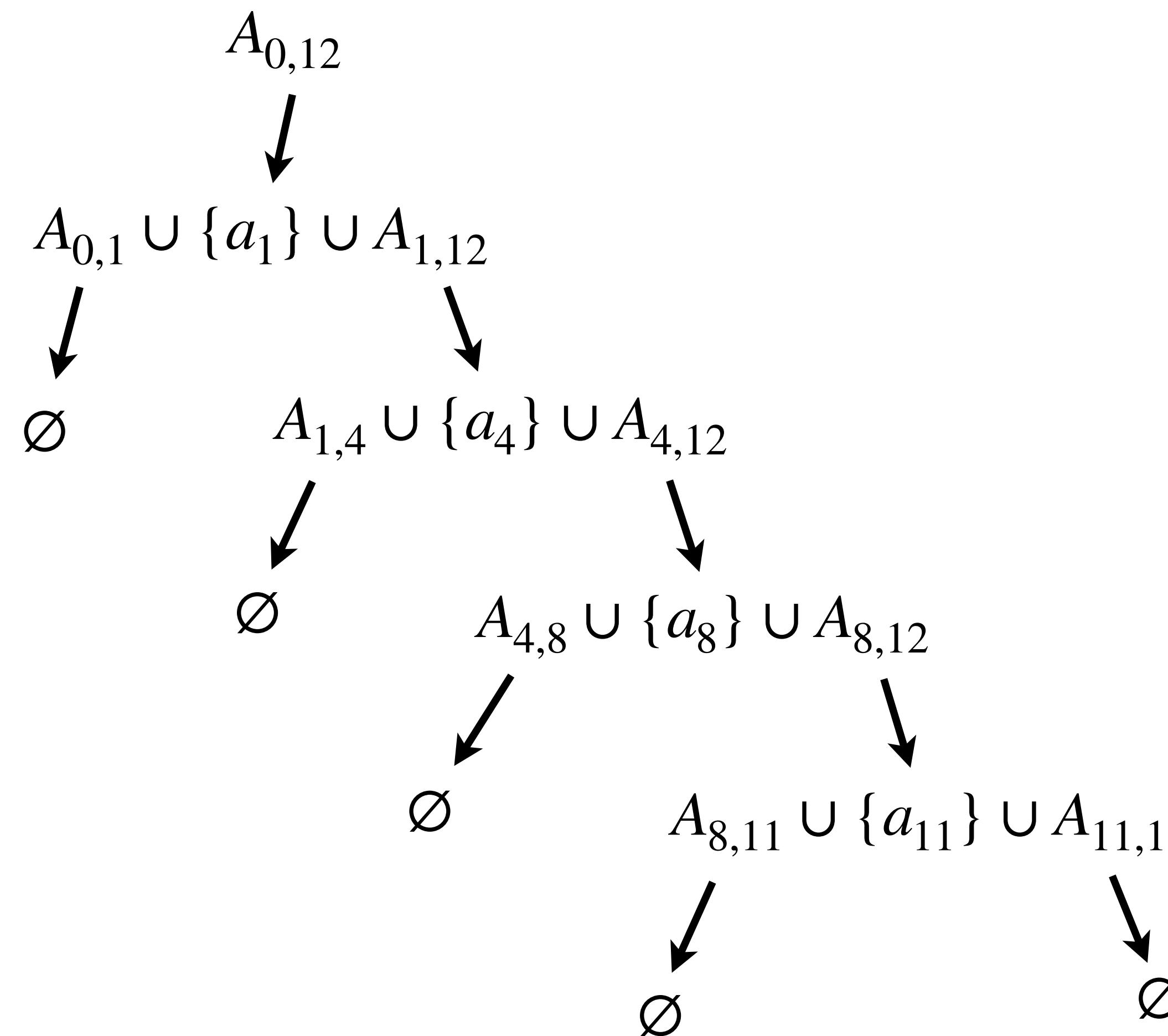
Greedy Algorithm for Activity-Selection



Greedy Algorithm for Activity-Selection

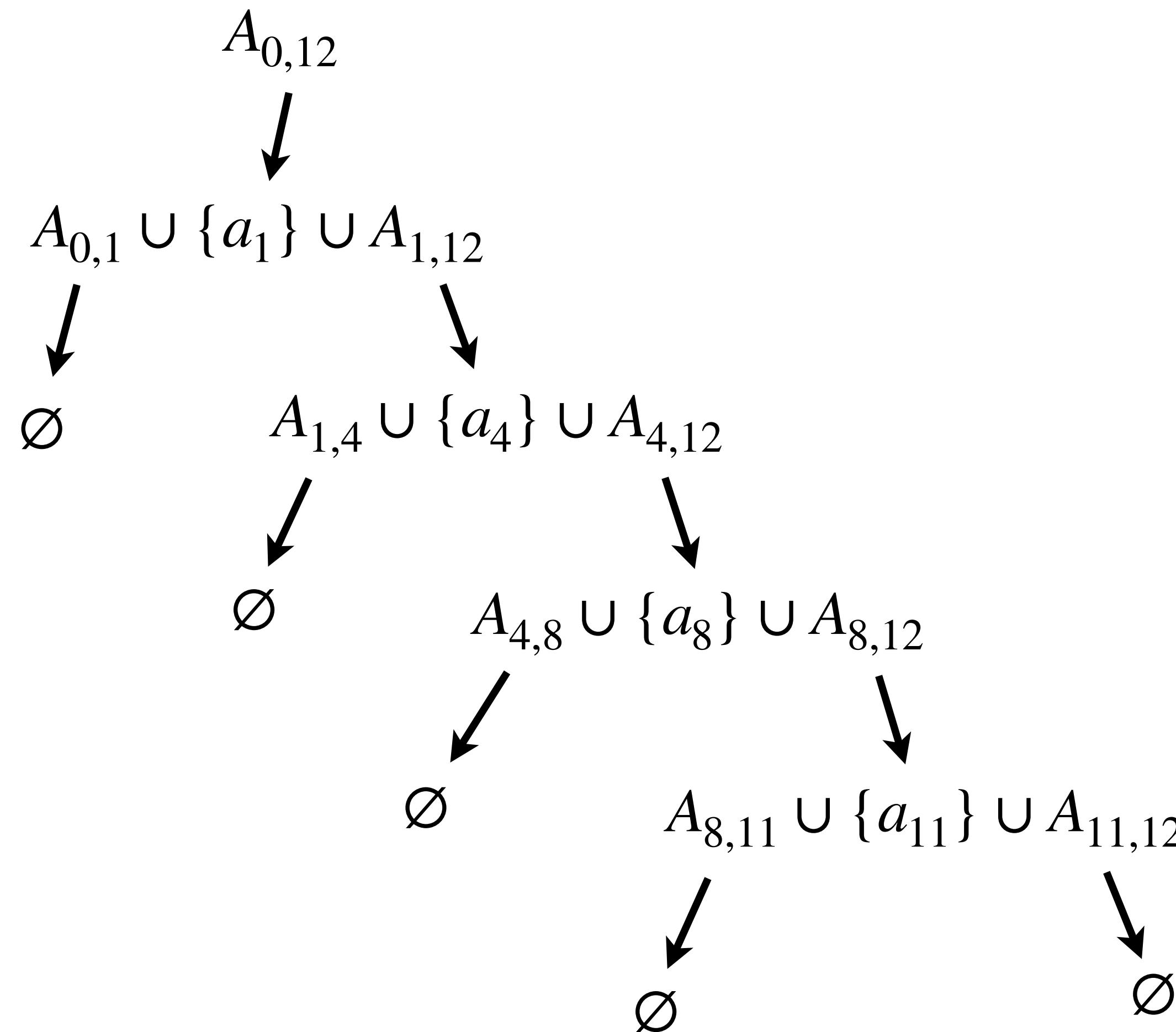


Greedy Algorithm for Activity-Selection



Greedy Algorithm for Activity-Selection

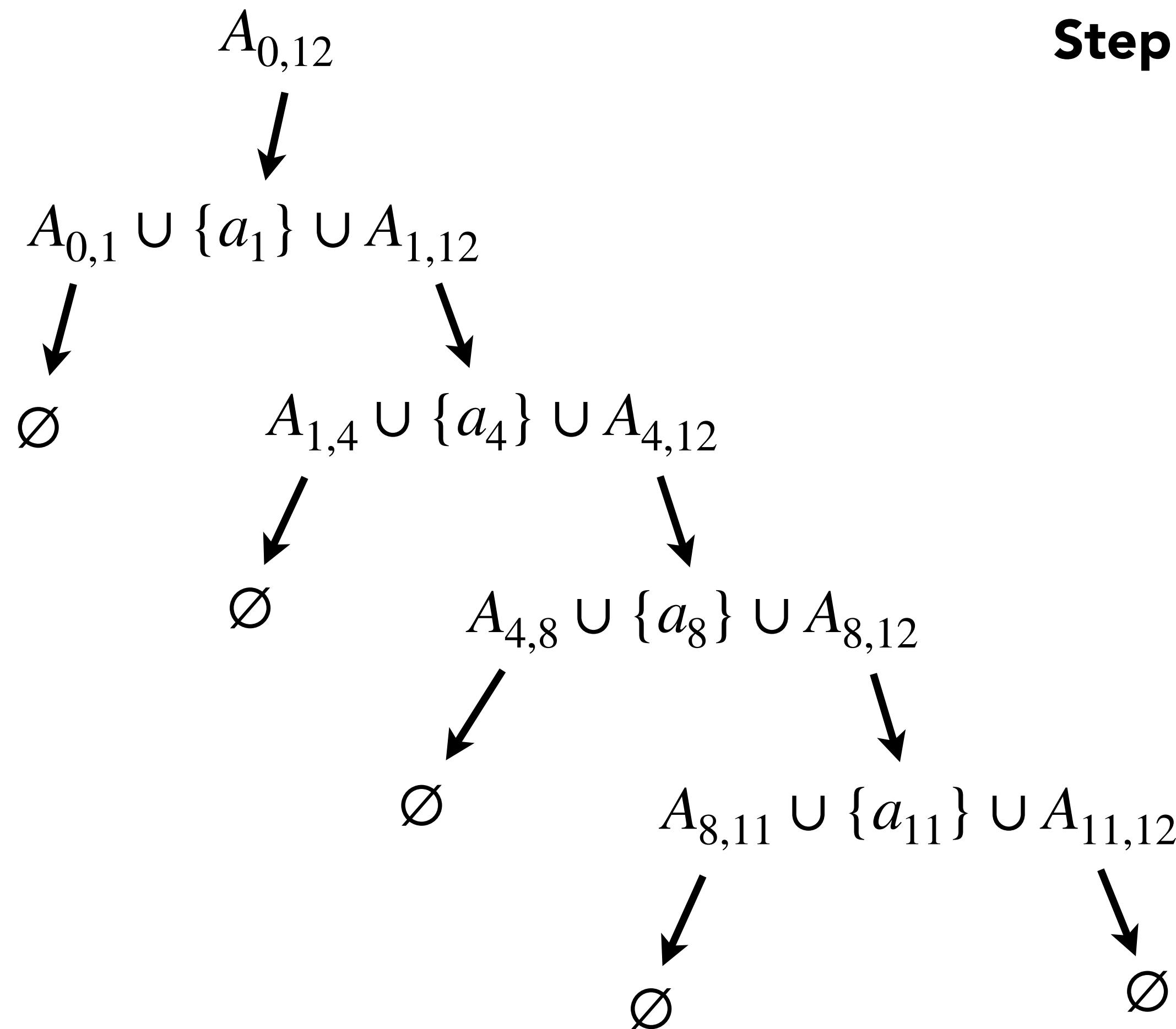
Greedy Strategy:



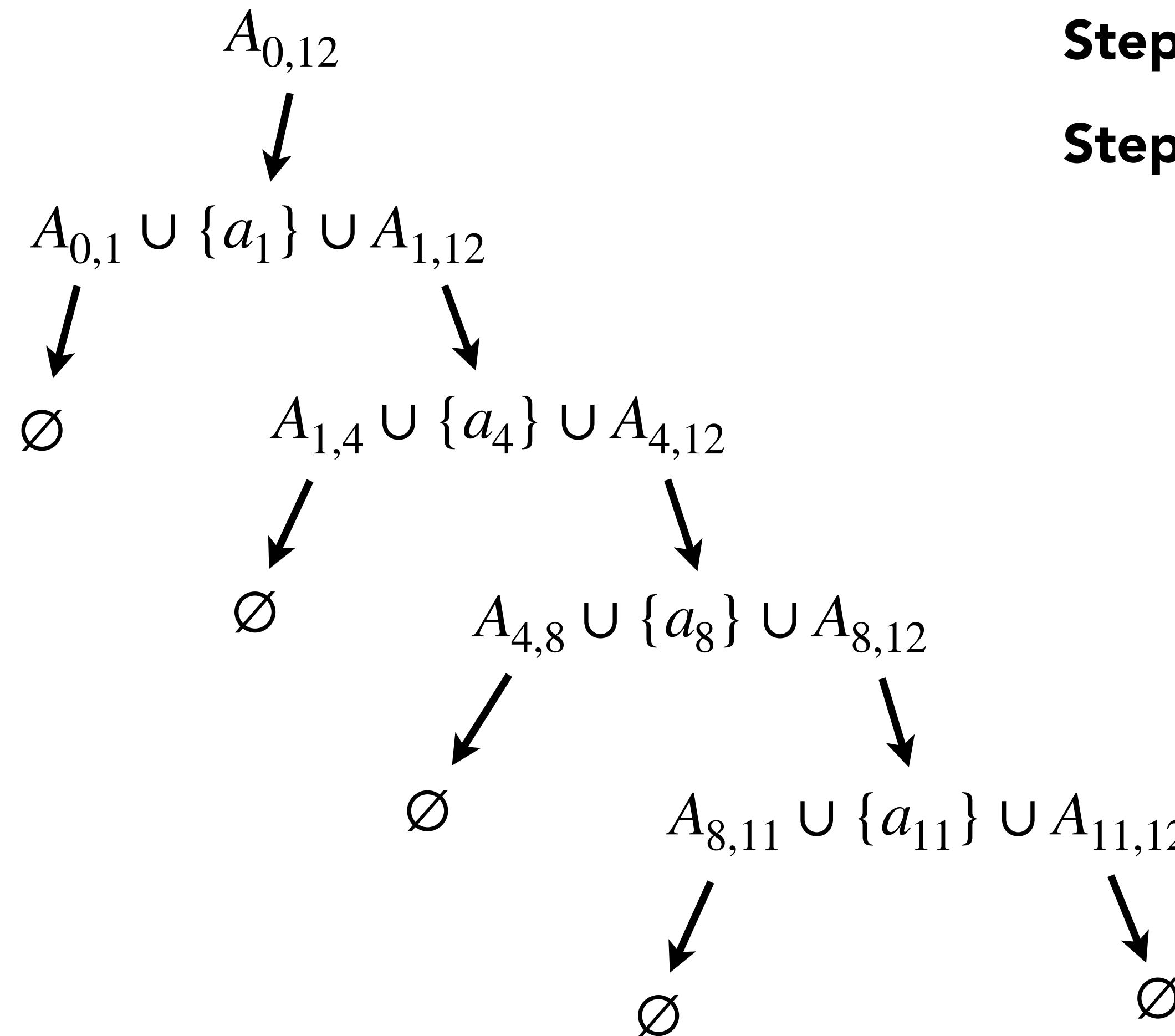
Greedy Algorithm for Activity-Selection

Greedy Strategy:

Step 1: Pick a_1 .



Greedy Algorithm for Activity-Selection

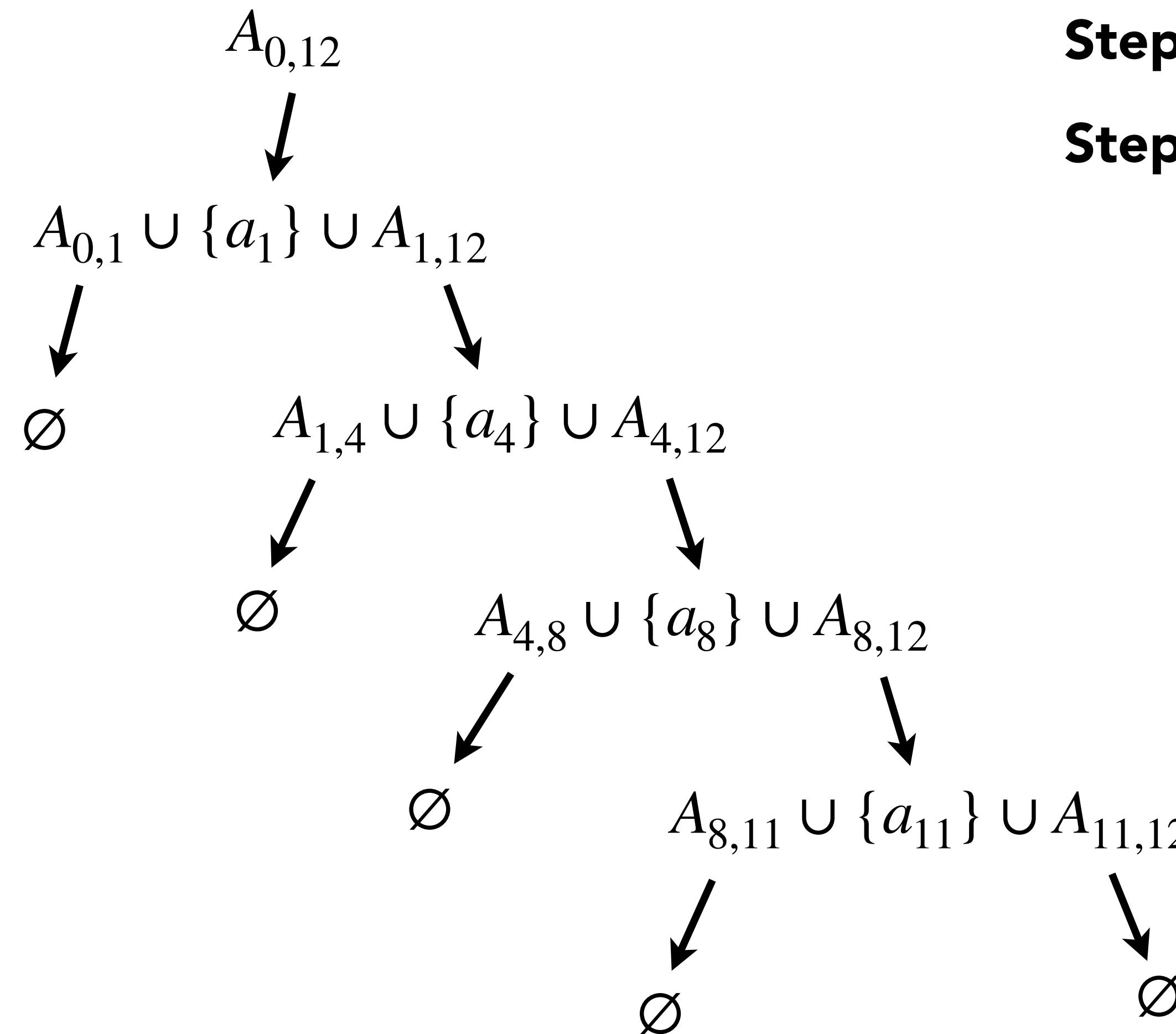


Greedy Strategy:

Step 1: Pick a_1 .

Step 2: Let a_k was the last picked activity. Then, pick the

Greedy Algorithm for Activity-Selection

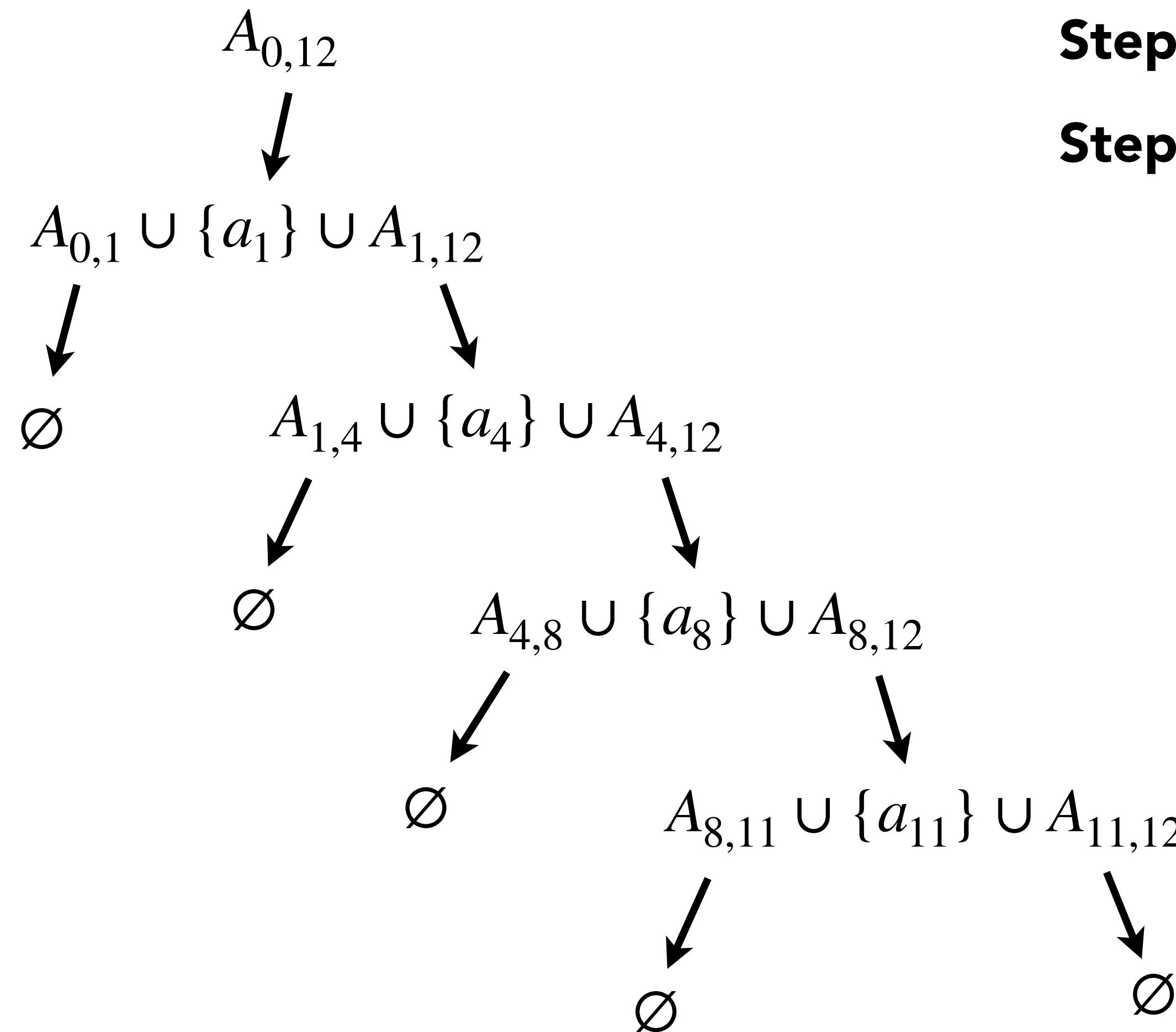


Greedy Strategy:

Step 1: Pick a_1 .

Step 2: Let a_k was the last picked activity. Then, pick the earliest finishing activity in $S_{k,n+1}$.

Greedy Algorithm for Activity-Selection

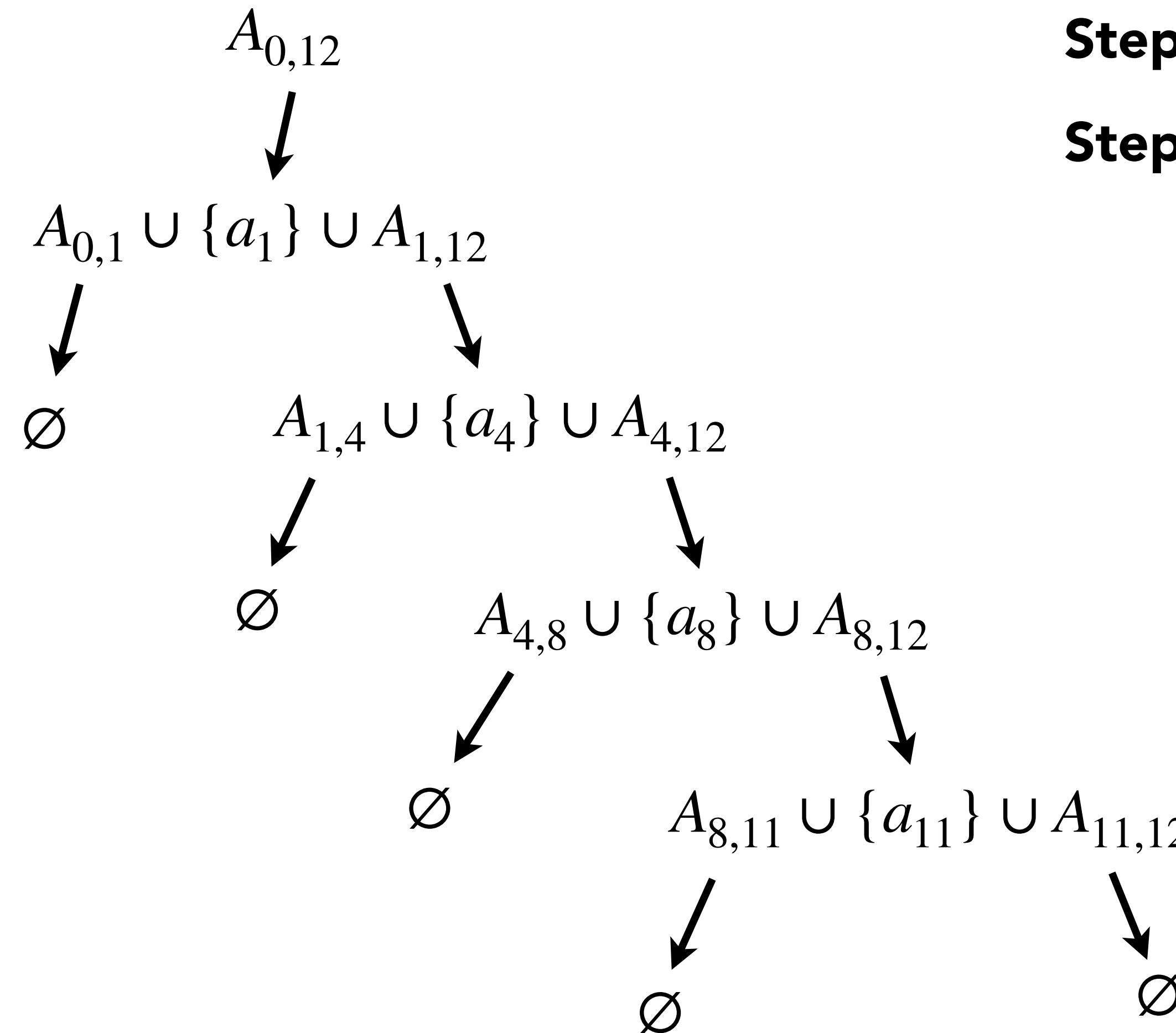


Greedy Strategy:

Step 1: Pick a_1 .

Step 2: Let a_k was the last picked activity. Then, pick the earliest finishing activity in $S_{k,n+1}$. That is, the first

Greedy Algorithm for Activity-Selection

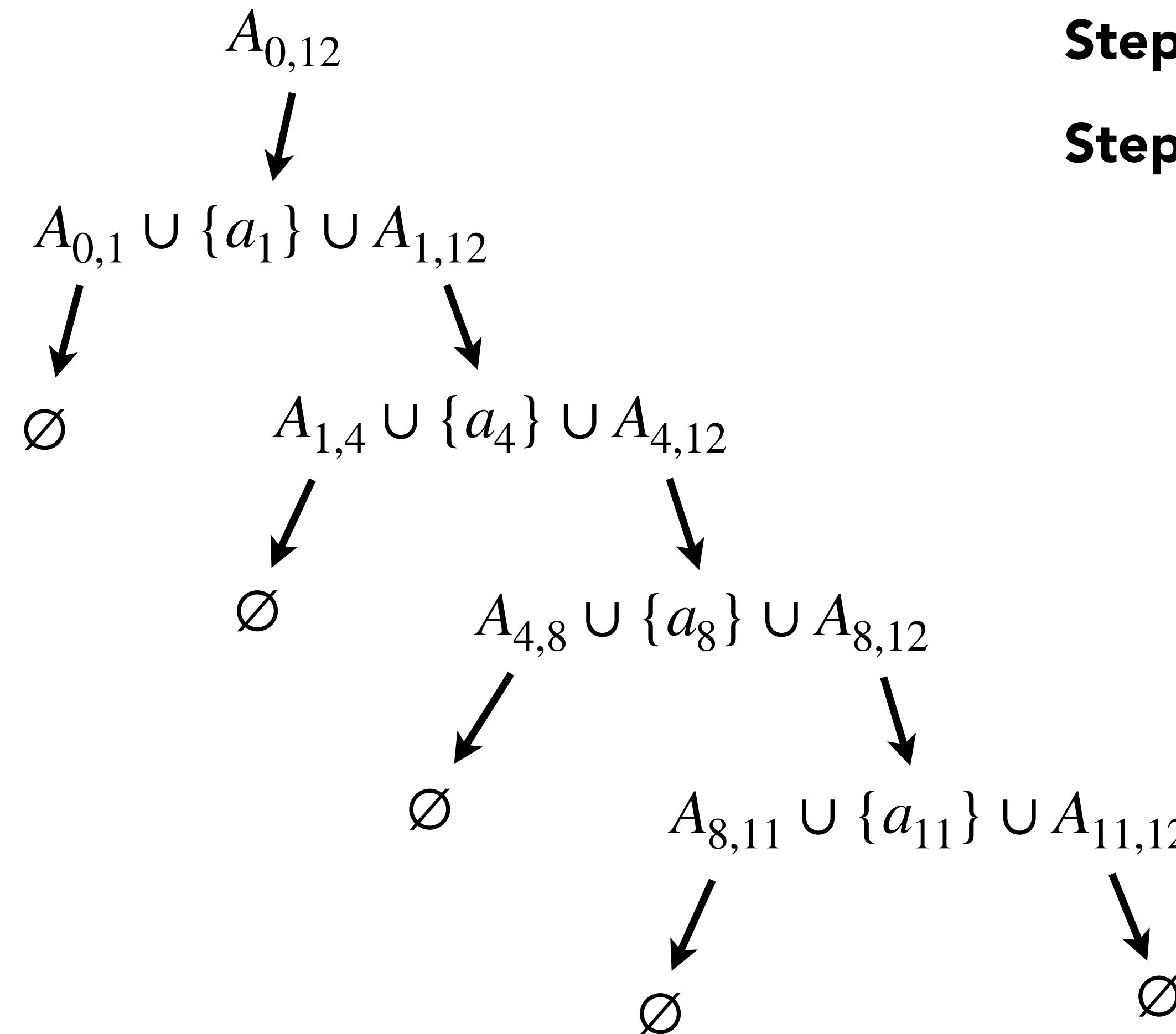


Greedy Strategy:

Step 1: Pick a_1 .

Step 2: Let a_k was the last picked activity. Then, pick the earliest finishing activity in $S_{k,n+1}$. That is, the first activity after a_k , say a_i , so that:

Greedy Algorithm for Activity-Selection



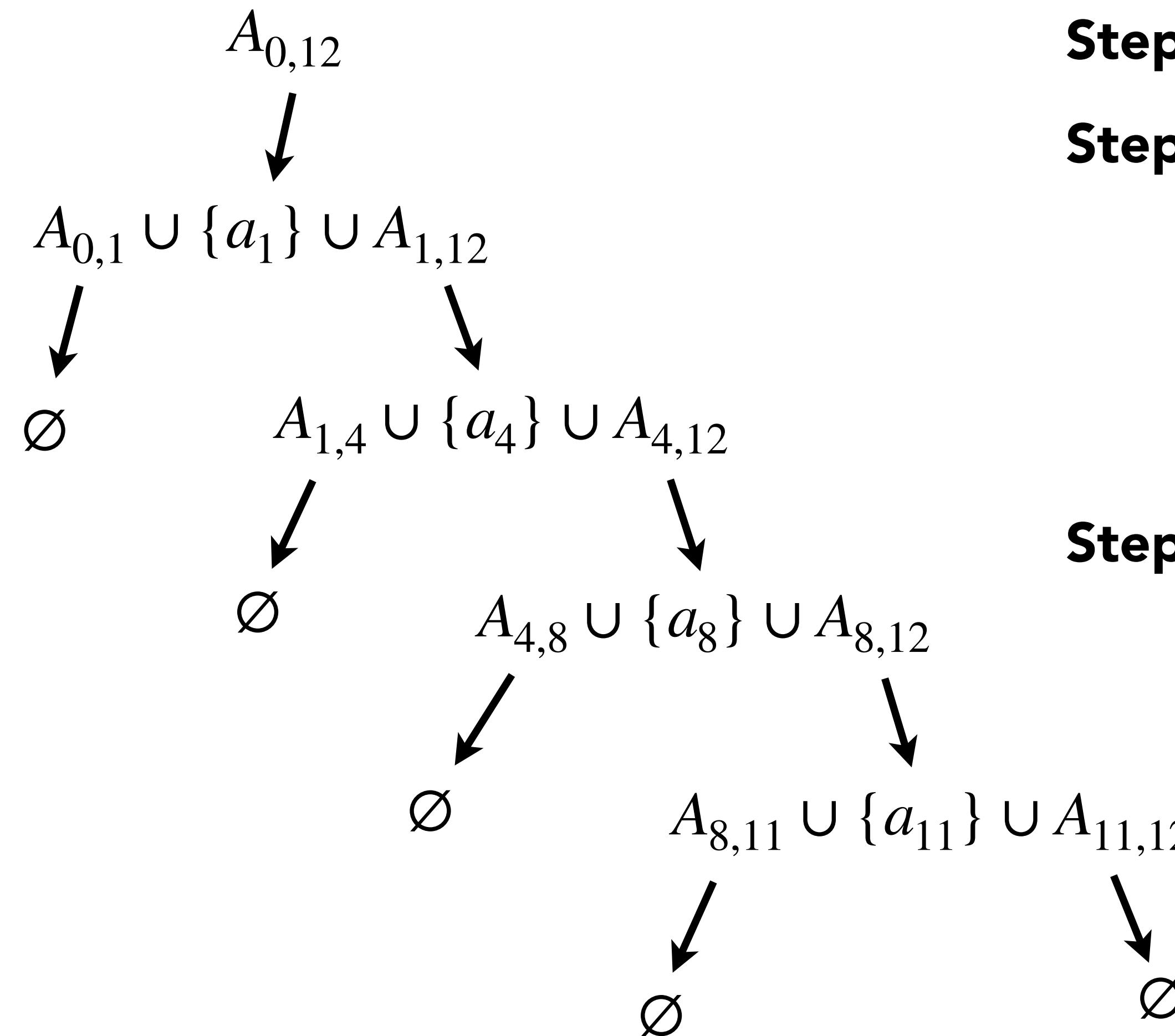
Greedy Strategy:

Step 1: Pick a_1 .

Step 2: Let a_k was the last picked activity. Then, pick the earliest finishing activity in $S_{k,n+1}$. That is, the first activity after a_k , say a_i , so that:

$a_k.finish \leq a_i.start$ and $a_i.finish \leq a_{n+1}.start$

Greedy Algorithm for Activity-Selection



Greedy Strategy:

Step 1: Pick a_1 .

Step 2: Let a_k was the last picked activity. Then, pick the earliest finishing activity in $S_{k,n+1}$. That is, the first activity after a_k , say a_i , so that:

$a_k.finish \leq a_i.start$ and $a_i.finish \leq a_{n+1}.start$

Step 3: Go to **Step 2**, if you can.

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

Activity-Selection($s, f, n + 2$)

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ **to** n

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ **to** n
4. **if** $f[k] \leq s[i]$ and $f[i] \leq s[n + 1]$

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ **to** n
4. **if** $f[k] \leq s[i]$ and $f[i] \leq s[n + 1]$
5. $A = A \cup \{a_i\}$

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ **to** n
4. **if** $f[k] \leq s[i]$ and $f[i] \leq s[n + 1]$
5. $A = A \cup \{a_i\}$
6. $k = i$ *// resetting the index of the last picked activity*

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ **to** n
4. **if** $f[k] \leq s[i]$ and $f[i] \leq s[n + 1]$
5. $A = A \cup \{a_i\}$
6. $k = i$ *// resetting the index of the last picked activity*
7. **return** A

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ to n
4. **if** $f[k] \leq s[i]$ and $f[i] \leq s[n + 1]$ *Will always be true. Hence, can be skipped.*
5. $A = A \cup \{a_i\}$
6. $k = i$ *// resetting the index of the last picked activity*
7. **return** A

Greedy Algorithm for Activity-Selection

Start and finish time of $n + 2$ activities (with dummy activities a_0 and a_{n+1})

Activity-Selection($s, f, n + 2$)

1. $A = \{a_1\}$
2. $k = 1$ *// k is the index of the last picked activity*
3. **for** $i = 2$ to n
4. **if** $f[k] \leq s[i]$ and $f[i] \leq s[n + 1]$ *Will always be true. Hence, can be skipped.*
5. $A = A \cup \{a_i\}$
6. $k = i$ *// resetting the index of the last picked activity*
7. **return** A

Time Complexity: $\Theta(n)$

When to Use Greedy?

When to Use Greedy?

Greedy is typically used in **optimization problems** with the following two properties:

When to Use Greedy?

Greedy is typically used in **optimization problems** with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to

When to Use Greedy?

Greedy is typically used in **optimization problems** with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to subproblems.

When to Use Greedy?

Greedy is typically used in **optimization problems** with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to subproblems.

$$\text{If } a_{i+1} \in A_{i,j}, \text{ then } c_{i,j} = c_{i,i+1} + c_{i+1,j} + 1$$

When to Use Greedy?

Greedy is typically used in **optimization problems** with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to subproblems.

$$\text{If } a_{i+1} \in A_{i,j}, \text{ then } c_{i,j} = c_{i,i+1} + c_{i+1,j} + 1$$

Greedy Choice Property: A globally optimal solution can be constructed by making locally optimal (greedy) choices.

When to Use Greedy?

Greedy is typically used in **optimization problems** with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to subproblems.

If $a_{i+1} \in A_{i,j}$, then $c_{i,j} = c_{i,i+1} + c_{i+1,j} + 1$

Greedy Choice Property: A globally optimal solution can be constructed by making locally optimal (greedy) choices.

Earliest finishing activity in $S_{i,j}$ will be part of some $A_{i,j}$.

How to Use Greedy?

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

- Find the **optimal substructure**.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

- Find the **optimal substructure**.
- **Recursively** define the value of optimal solution.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

- Find the **optimal substructure**.
- **Recursively** define the value of optimal solution.
- Show that by making a **greedy** choice you **don't** need to solve **all** the subproblems.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

- Find the **optimal substructure**.
- **Recursively** define the value of optimal solution.
- Show that by making a **greedy** choice you **don't** need to solve **all** the subproblems.
- Show that it is **safe** to make a **greedy** choice.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

- Find the **optimal substructure**.
- **Recursively** define the value of optimal solution.
- Show that by making a **greedy** choice you **don't** need to solve **all** the subproblems.
- Show that it is **safe** to make a **greedy** choice.
- Develop the **algorithm** that implements the greedy strategy.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

- Find the **optimal substructure**.
- **Recursively** define the value of optimal solution.
- Show that by making a **greedy** choice you **don't** need to solve **all** the subproblems.
- Show that it is **safe** to make a **greedy** choice.
- Develop the **algorithm** that implements the greedy strategy.

Note: In practice, one can directly present a greedy algorithm, skipping the above steps..

Minimum Spanning Tree

Minimum Spanning Tree

MST:

Minimum Spanning Tree

MST:

Input: An undirected, weighted and connected graph $G = (V, E, w)$.

Minimum Spanning Tree

MST:

Input: An undirected, weighted and connected graph $G = (V, E, w)$.

Output: A **spanning** tree $G' = (V, E')$ of G , such that $w(E') = \sum_{(u,v) \in E'} w(u, v)$ is **minimised**.

Minimum Spanning Tree

MST:

Input: An undirected, weighted and connected graph $G = (V, E, w)$.

Output: A **spanning** tree $G' = (V, E')$ of G , such that $w(E') = \sum_{(u,v) \in E'} w(u, v)$ is **minimised**.

Example:

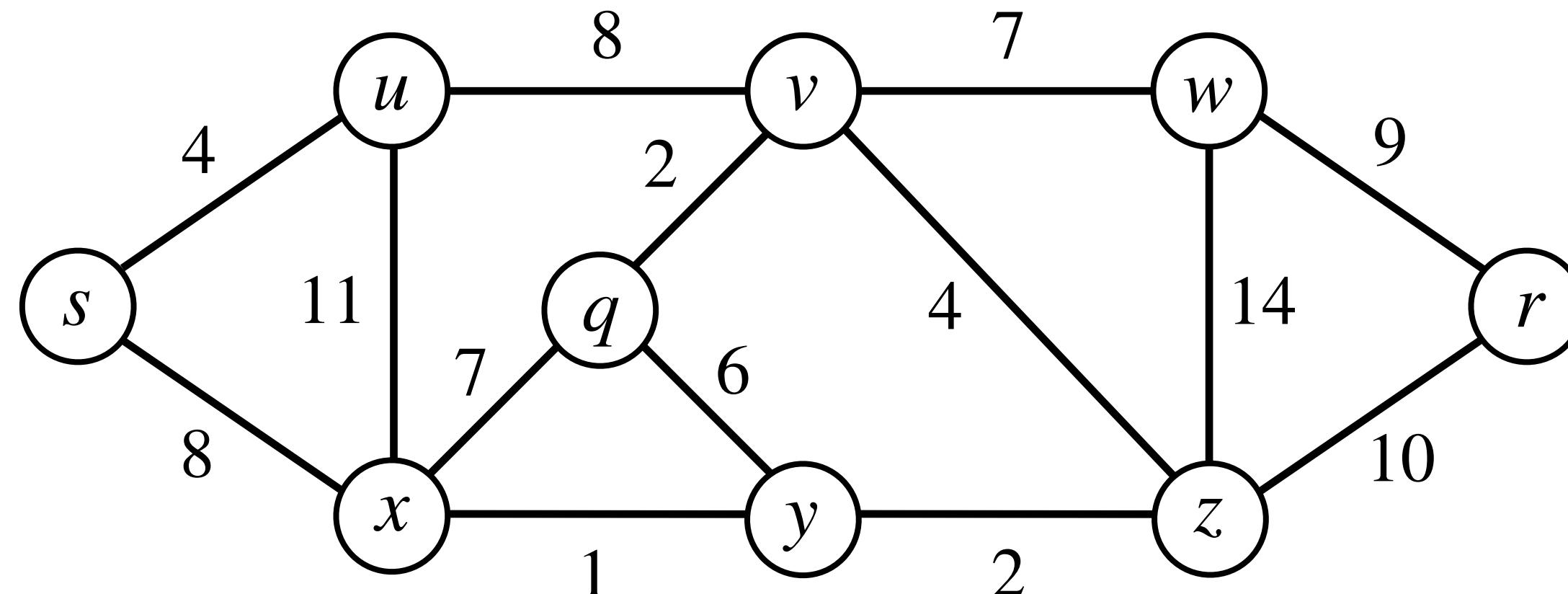
Minimum Spanning Tree

MST:

Input: An undirected, weighted and connected graph $G = (V, E, w)$.

Output: A **spanning** tree $G' = (V, E')$ of G , such that $w(E') = \sum_{(u,v) \in E'} w(u, v)$ is **minimised**.

Example:



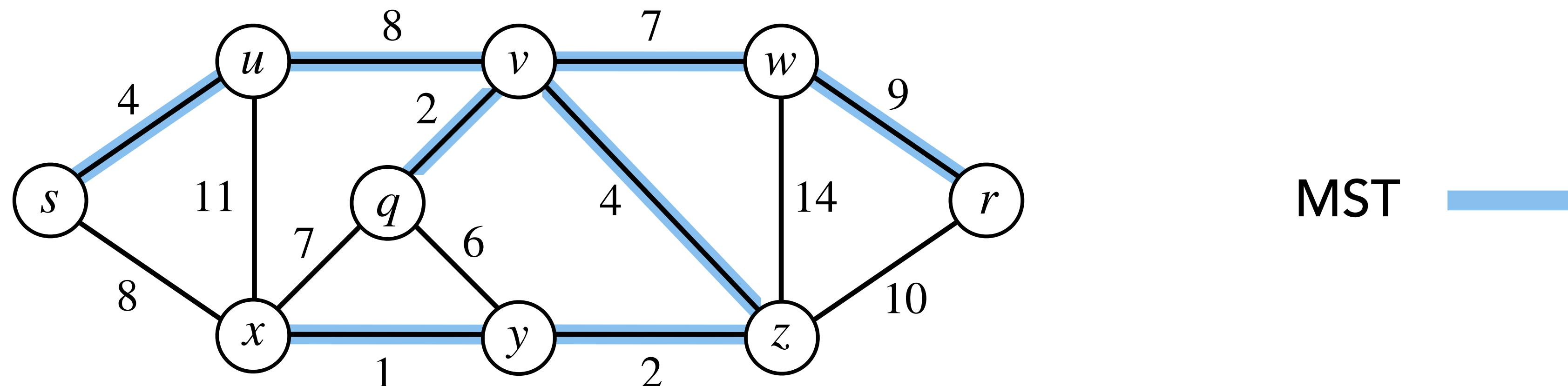
Minimum Spanning Tree

MST:

Input: An undirected, weighted and connected graph $G = (V, E, w)$.

Output: A **spanning** tree $G' = (V, E')$ of G , such that $w(E') = \sum_{(u,v) \in E'} w(u, v)$ is **minimised**.

Example:



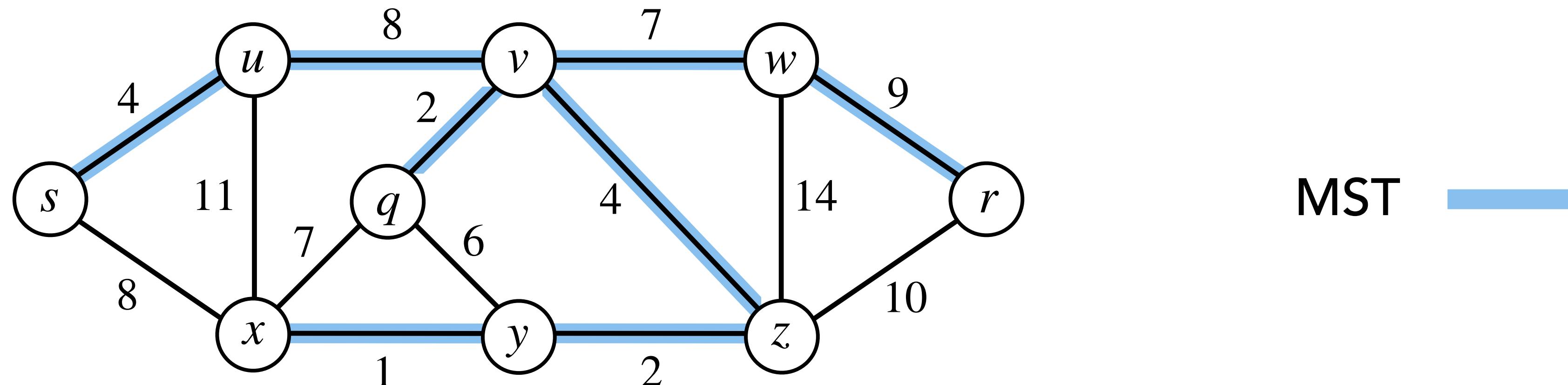
Minimum Spanning Tree

MST:

Input: An undirected, weighted and connected graph $G = (V, E, w)$.

Output: A **spanning** tree $G' = (V, E')$ of G , such that $w(E') = \sum_{(u,v) \in E'} w(u, v)$ is **minimised**.

Example:



Note: We will represent an MST as a set of edges.

Cut Connection of MST

Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$

Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$.

Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$. The **cut-set** of a cut $C = (S, T)$ is the set of edges that have one endpoint in S and other in T .

Cut Connection of MST

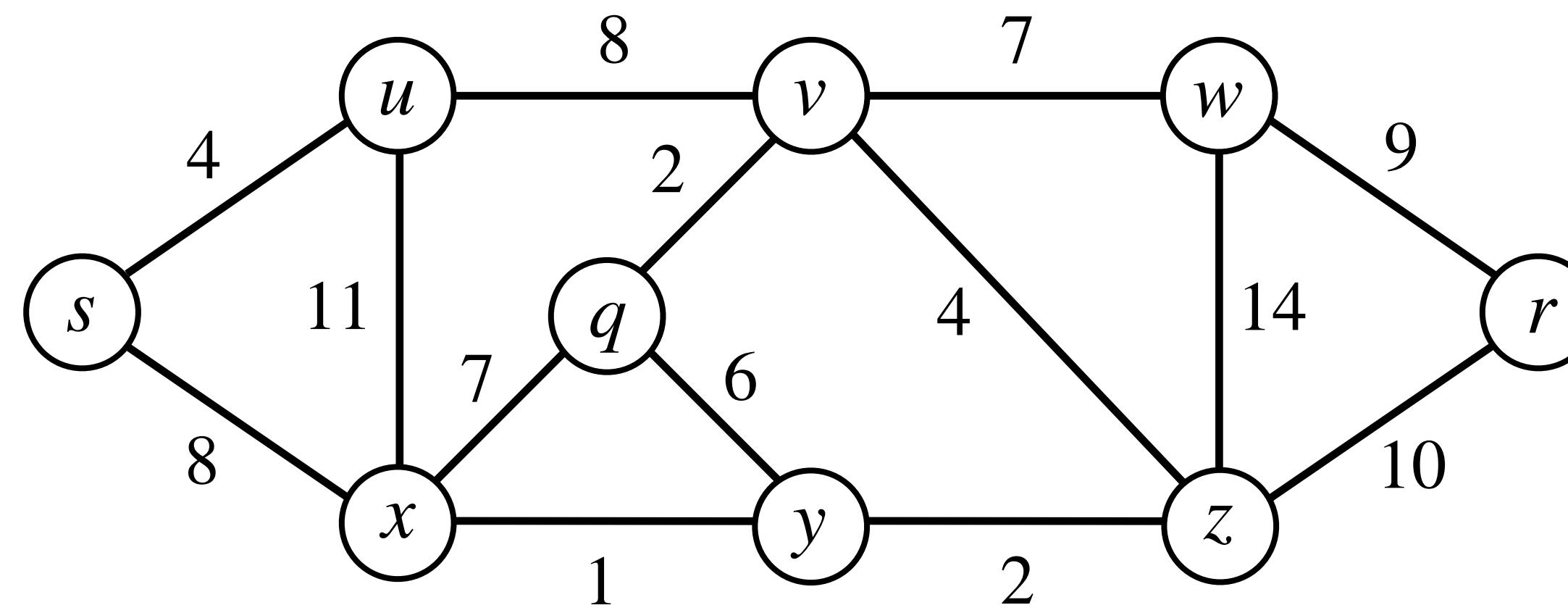
Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$. The **cut-set** of a cut $C = (S, T)$ is the set of edges that have one endpoint in S and other in T .

Example:

Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$.
The **cut-set** of a cut $C = (S, T)$ is the set of edges that have one endpoint in S and other in T .

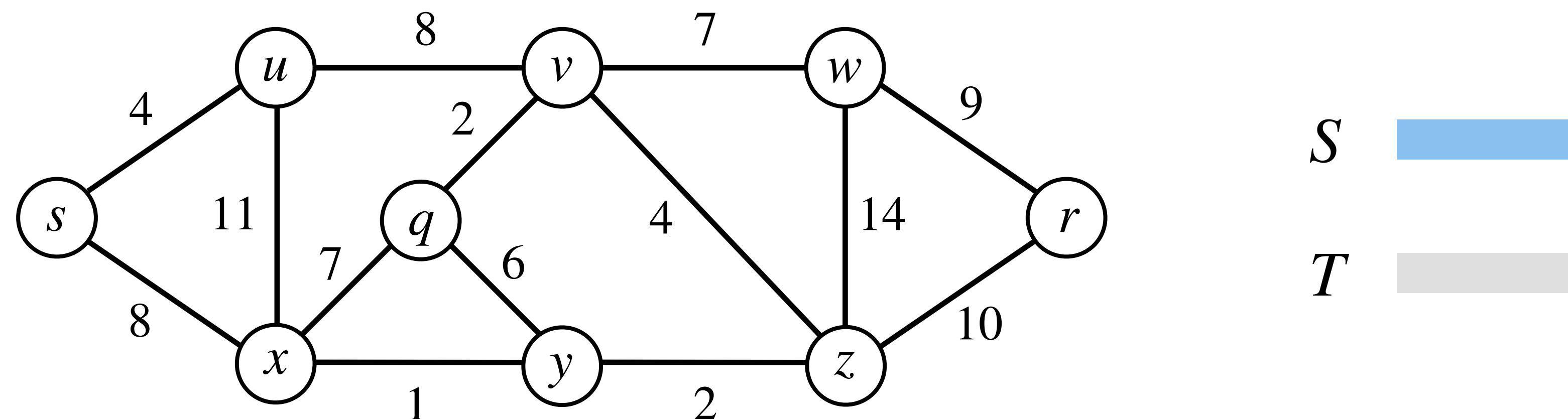
Example:



Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$.
The **cut-set** of a cut $C = (S, T)$ is the set of edges that have one endpoint in S and other in T .

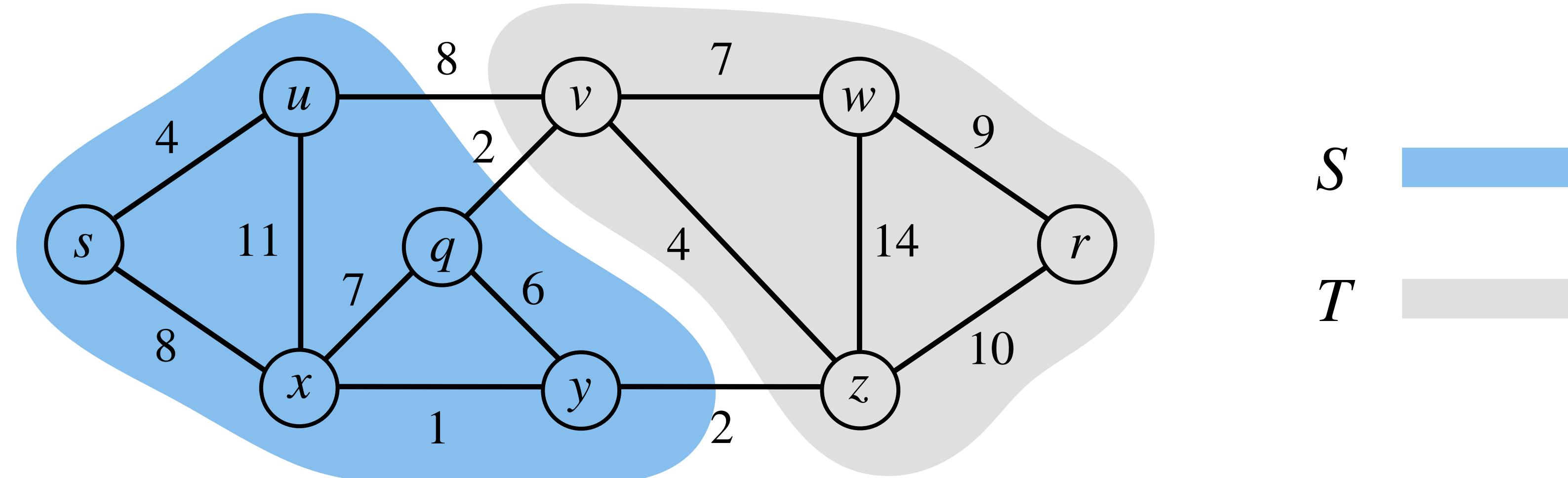
Example:



Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$. The **cut-set** of a cut $C = (S, T)$ is the set of edges that have one endpoint in S and other in T .

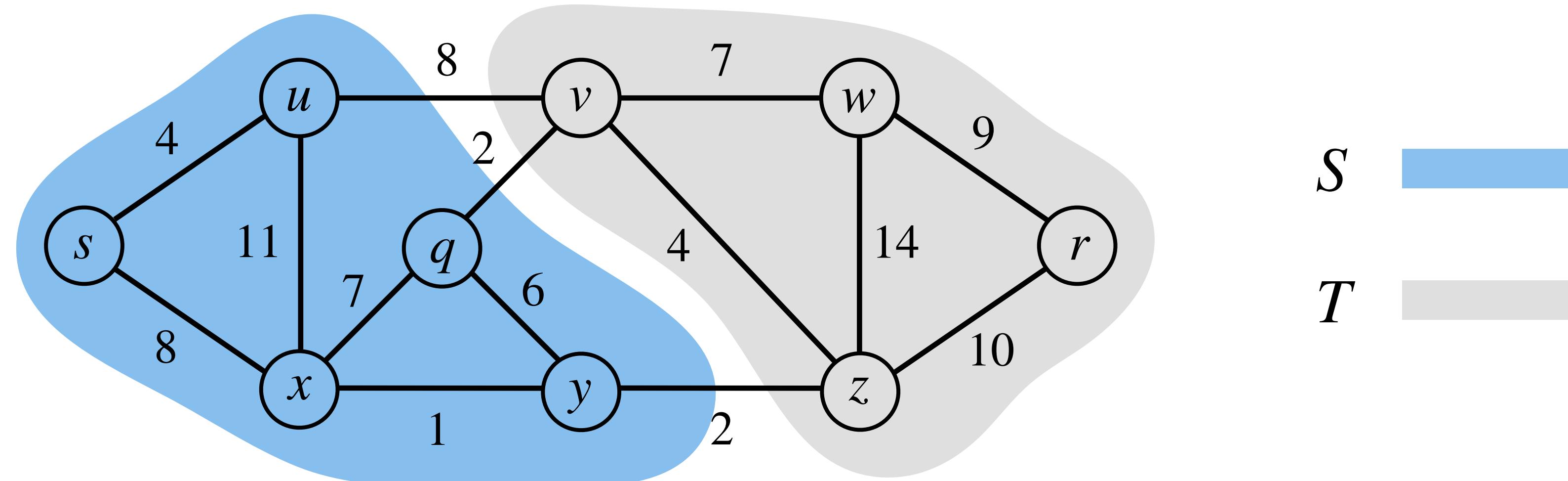
Example:



Cut Connection of MST

Defn: A **cut** $C = (S, T)$ of a graph $G = (V, E)$ is a **partition** of V in two subsets S and $T = V - S$. The **cut-set** of a cut $C = (S, T)$ is the set of edges that have one endpoint in S and other in T .

Example:



The **cut-set** for cut (S, T) is $\{\{u, v\}, \{q, v\}, \{y, z\}\}$

Cut Connection of MST

Lemma: Let $C = (S, T)$ be a cut of an undirected, weighted and connected graph $G = (V, E, w)$.

Cut Connection of MST

Lemma: Let $C = (S, T)$ be a cut of an undirected, weighted and connected graph $G = (V, E, w)$. If e is the least weight edge in the cut-set of C ,

Cut Connection of MST

Lemma: Let $C = (S, T)$ be a cut of an undirected, weighted and connected graph $G = (V, E, w)$. If e is the least weight edge in the cut-set of C , then e is part of some MST of G .

Cut Connection of MST

Lemma: Let $C = (S, T)$ be a cut of an undirected, weighted and connected graph $G = (V, E, w)$. If e is the least weight edge in the cut-set of C , then e is part of some MST of G .

Proof: On the next slide.

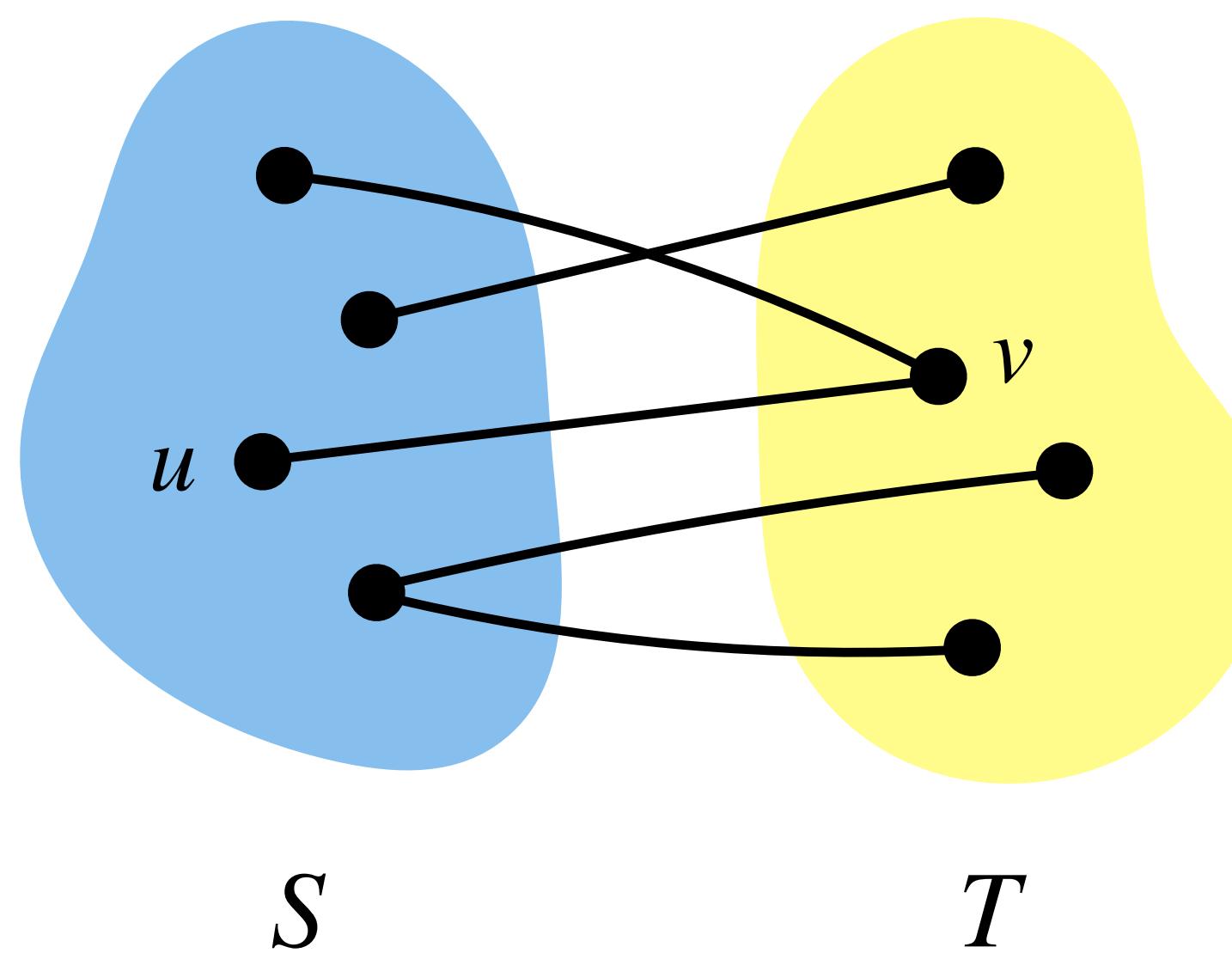
Cut Connection of MST

Cut Connection of MST

Proof:

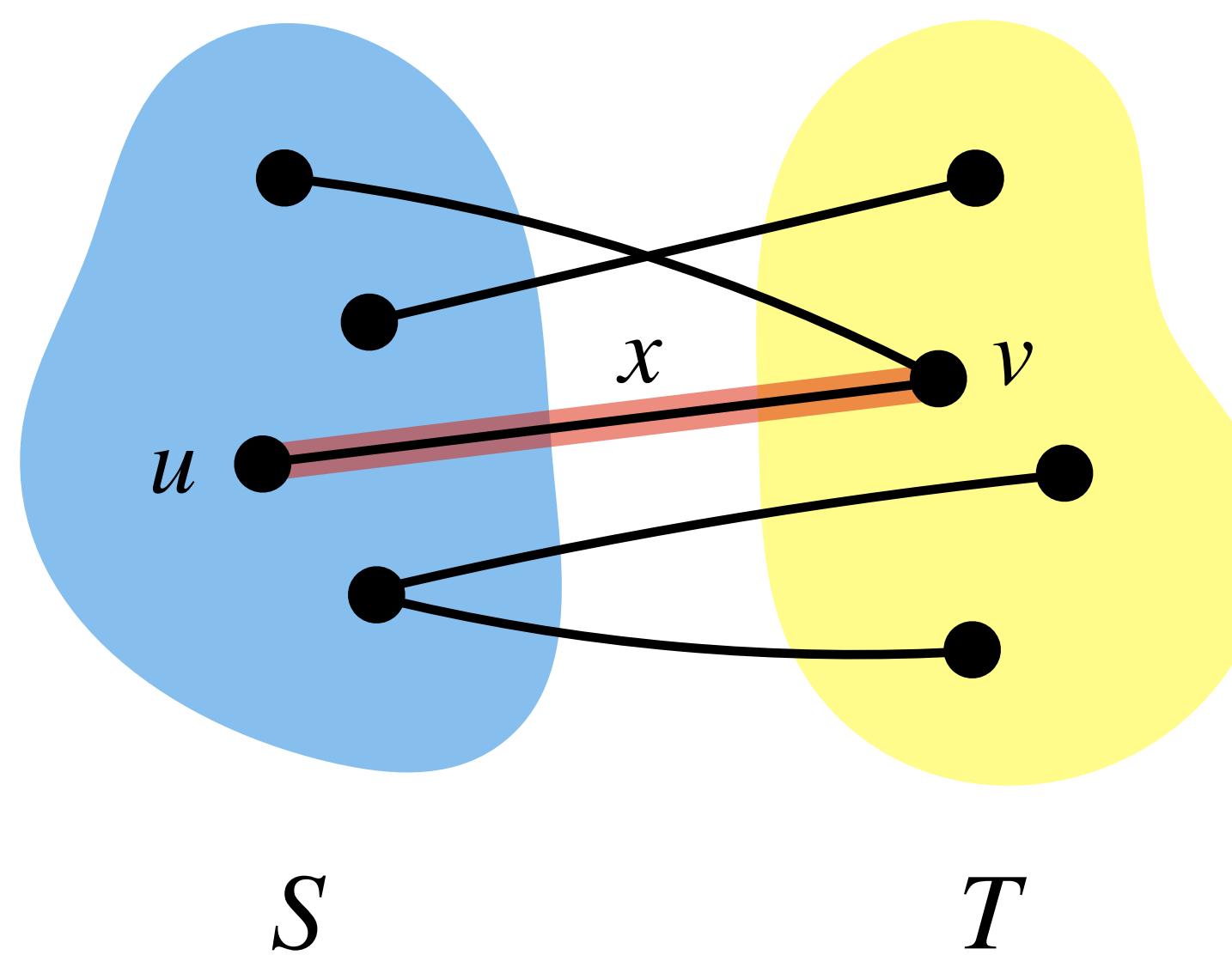
Cut Connection of MST

Proof:



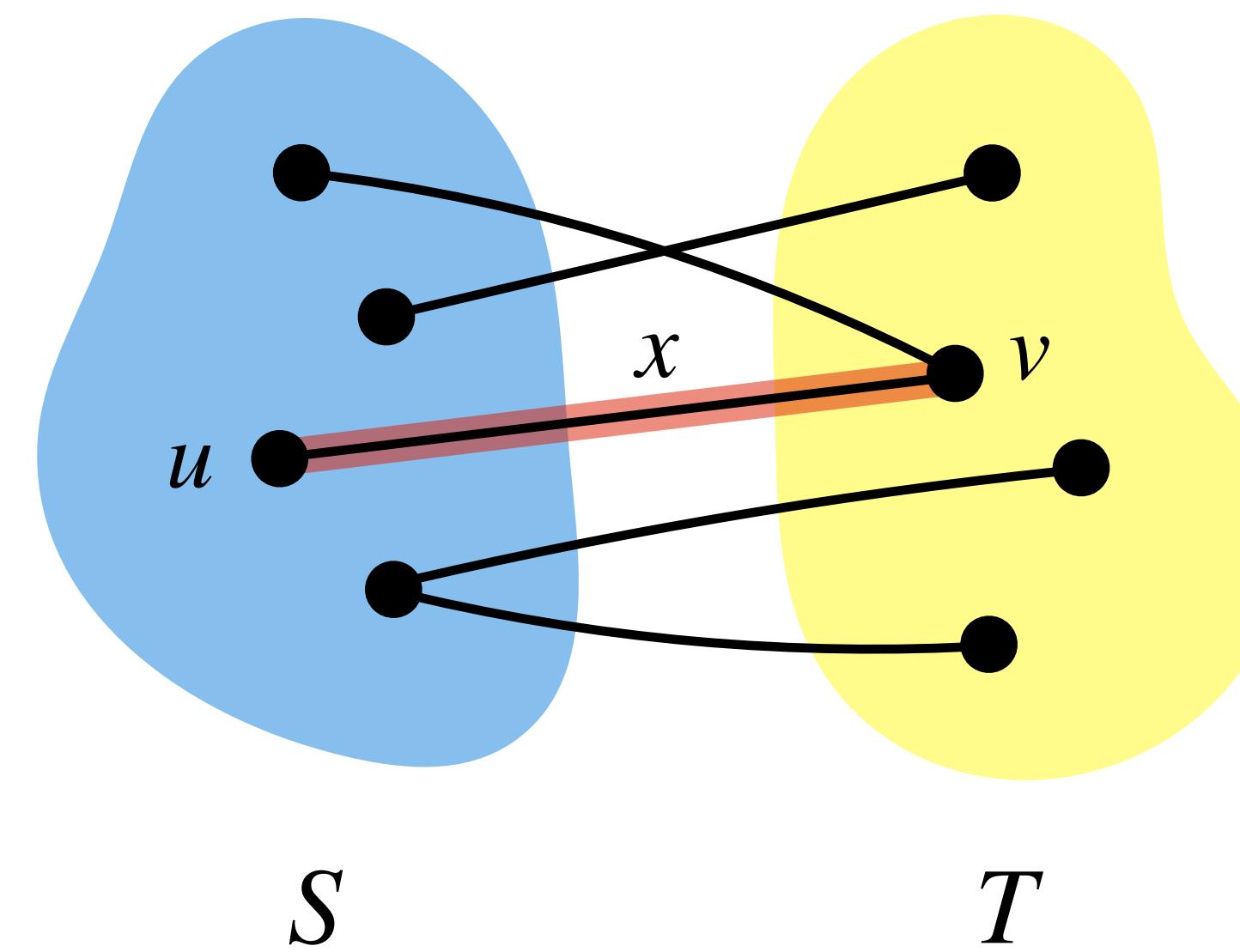
Cut Connection of MST

Proof:



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$.

Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$. If we cannot pick such a T we are done.

Cut Connection of MST

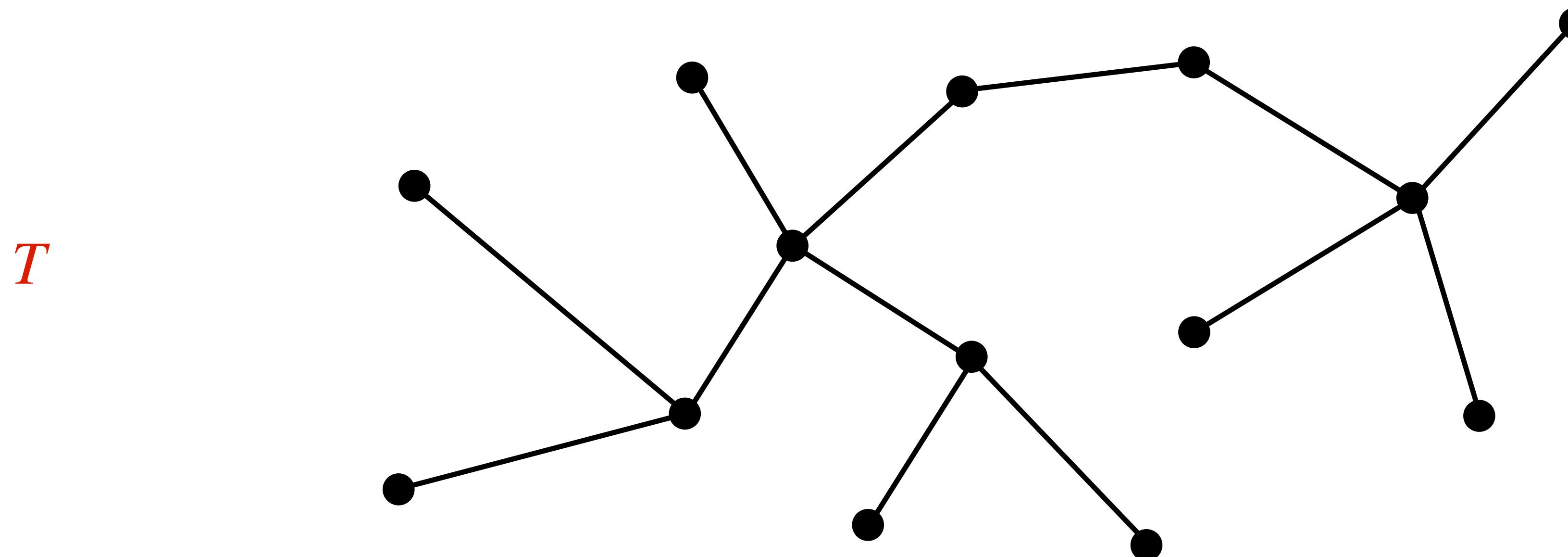
Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$.

Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

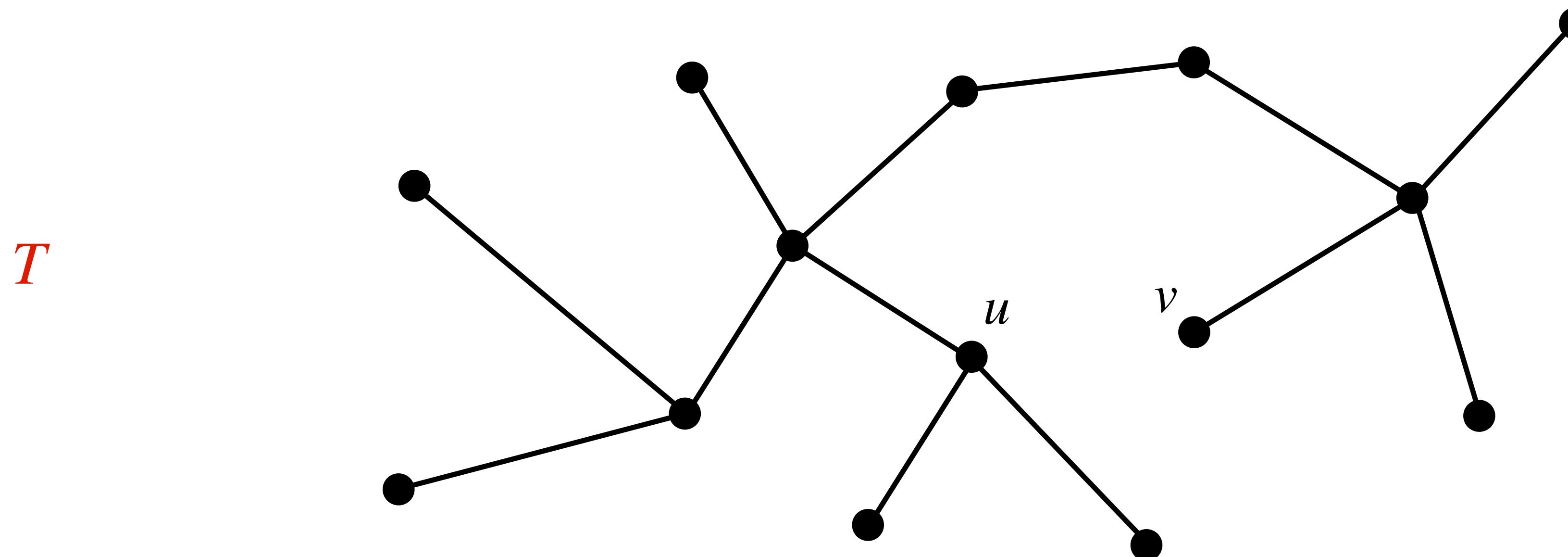
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

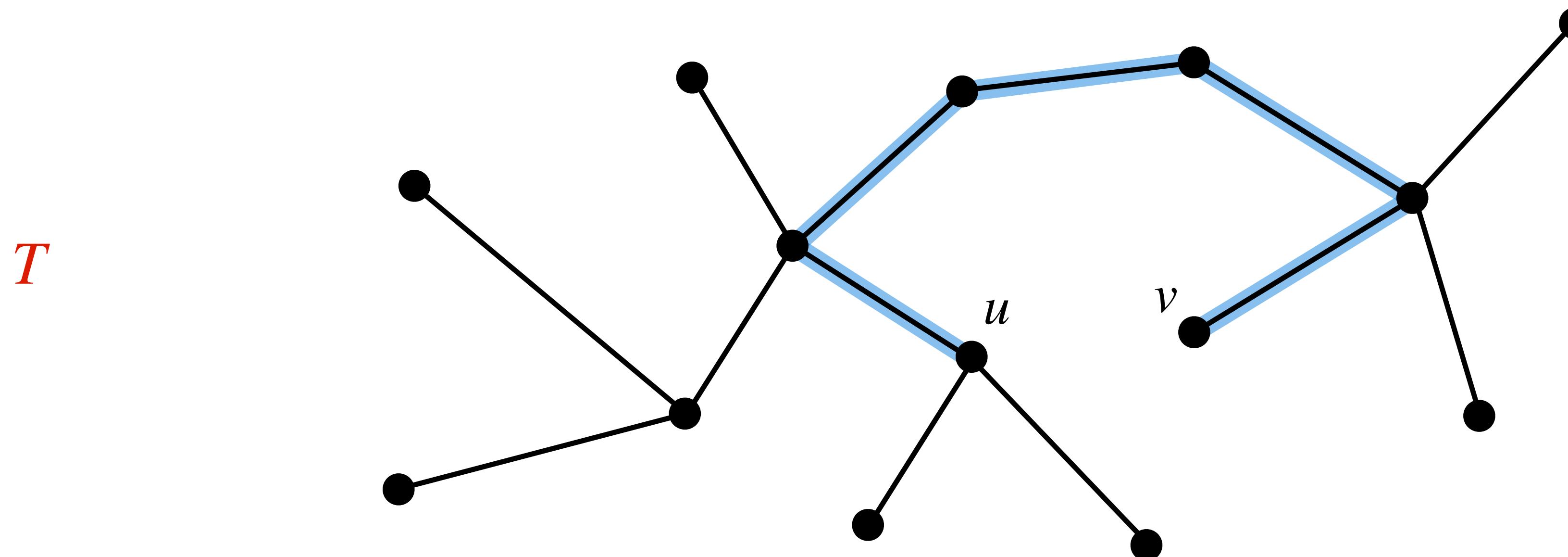
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

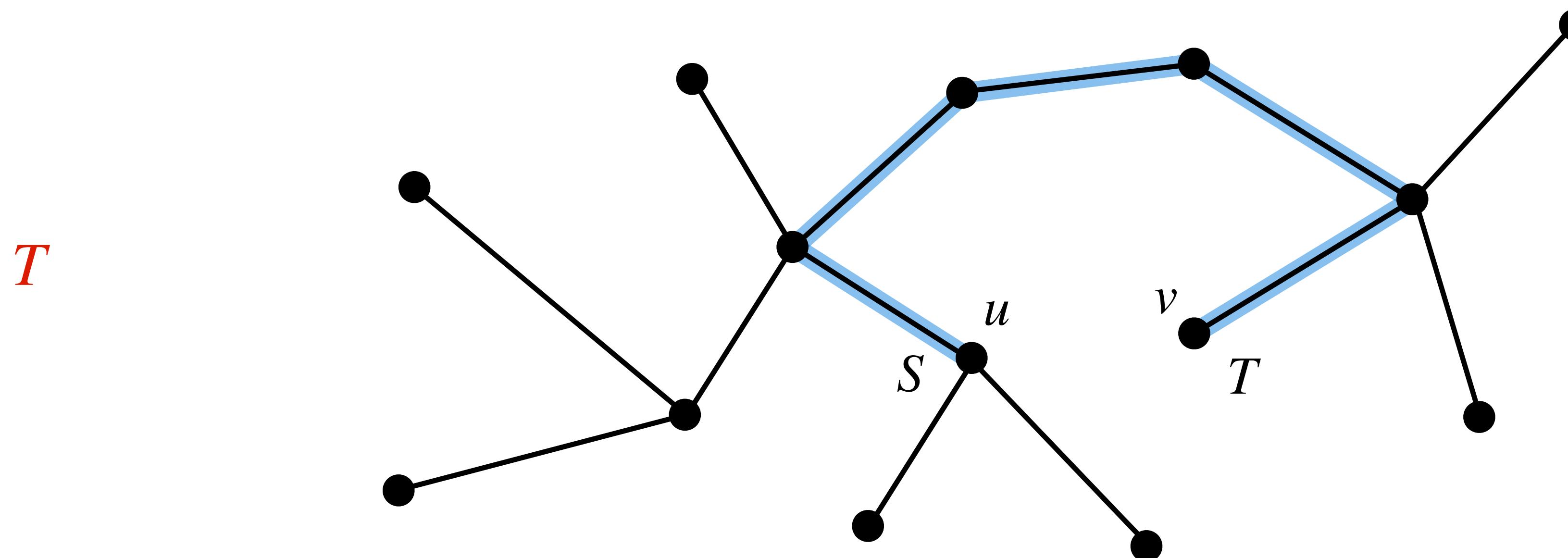
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

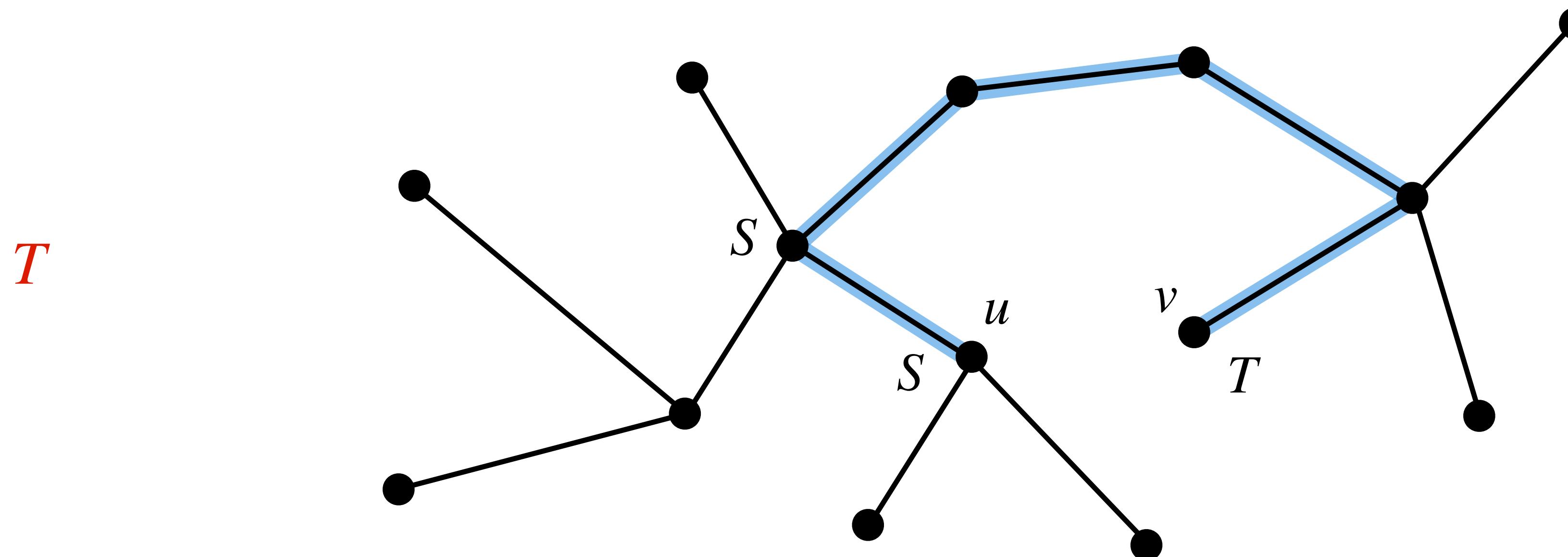
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

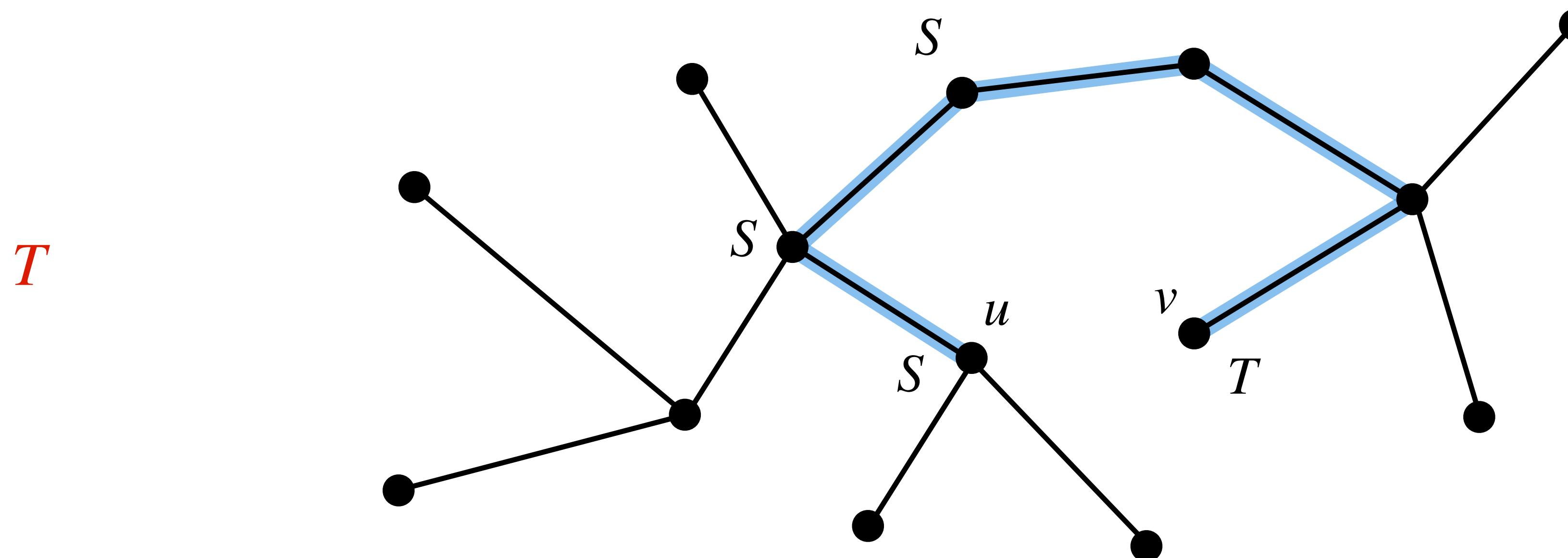
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

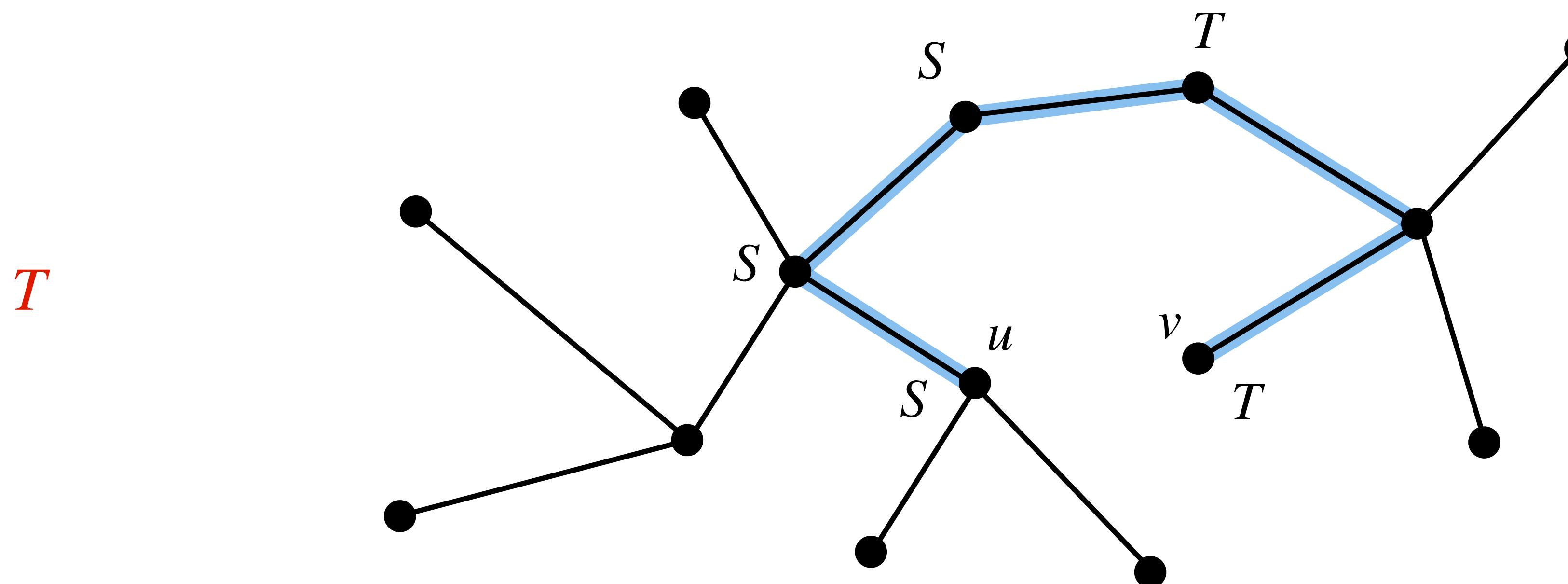
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

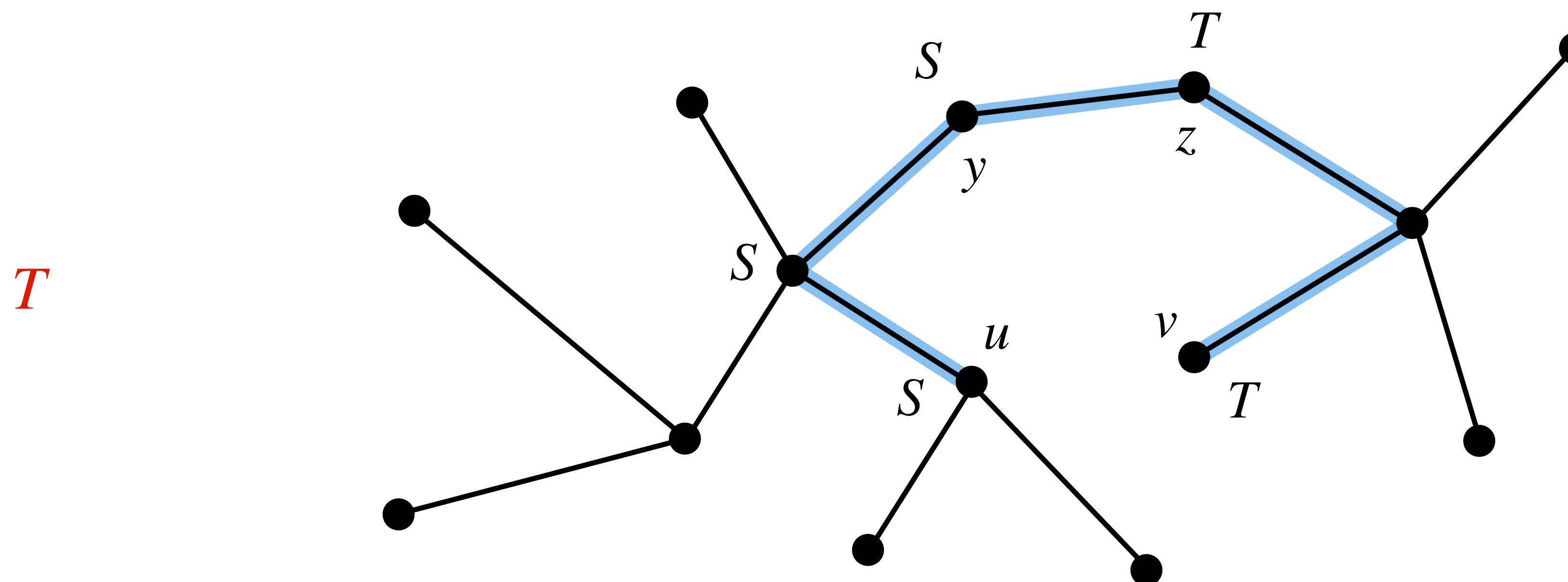
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

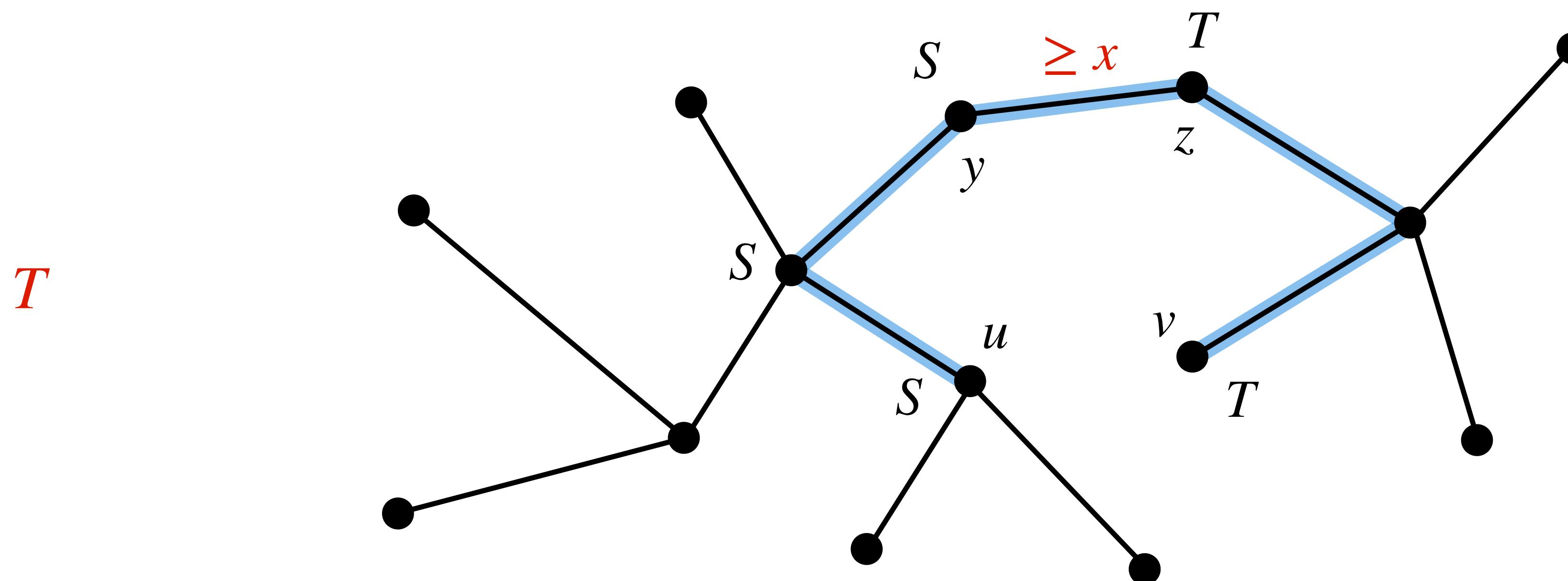
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

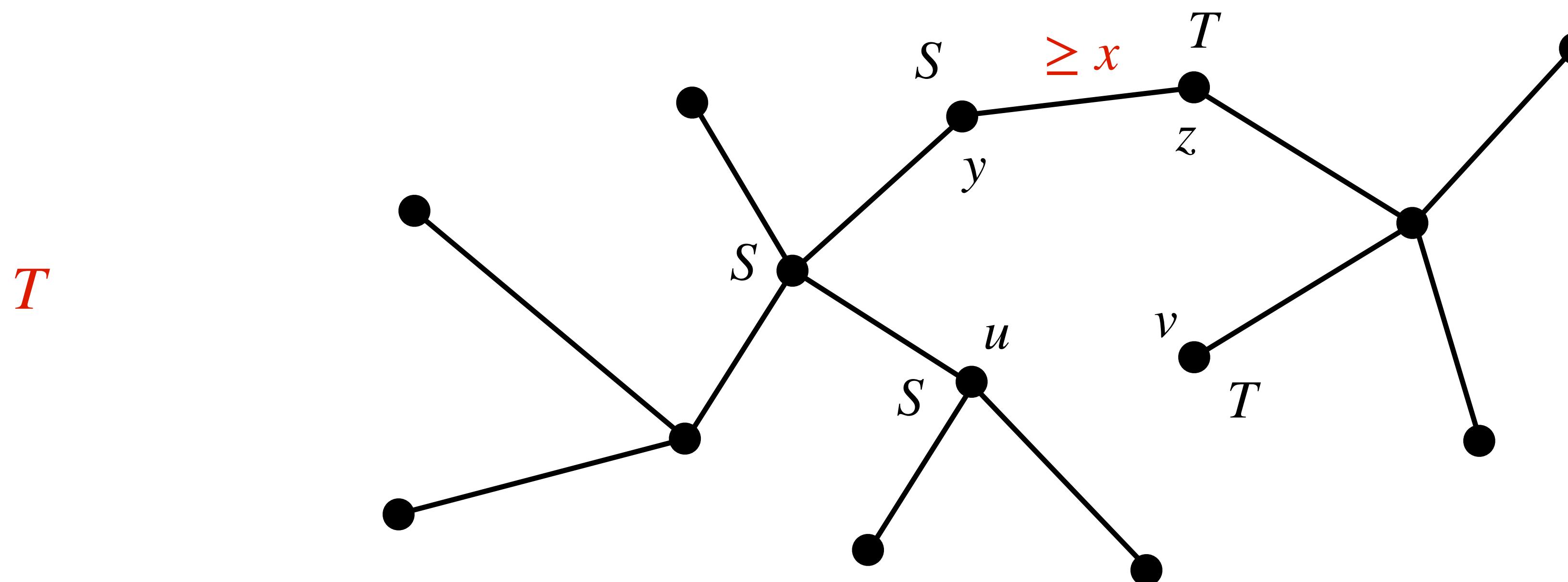
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

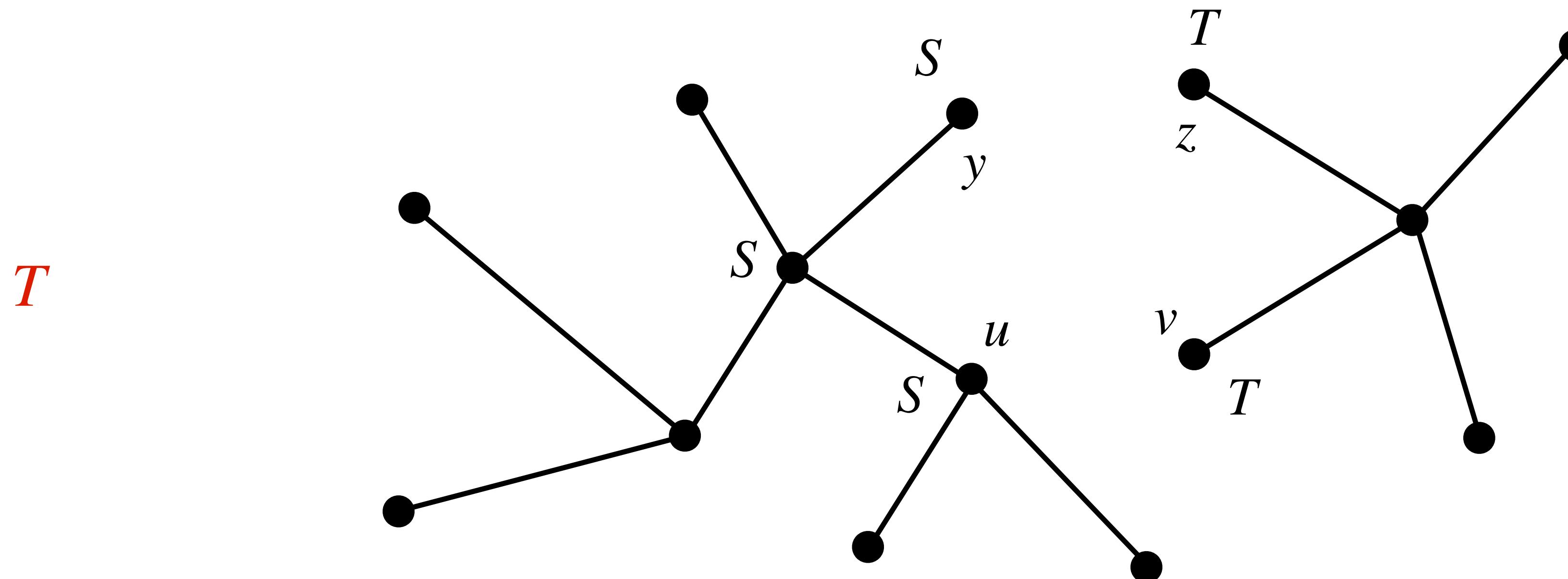
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

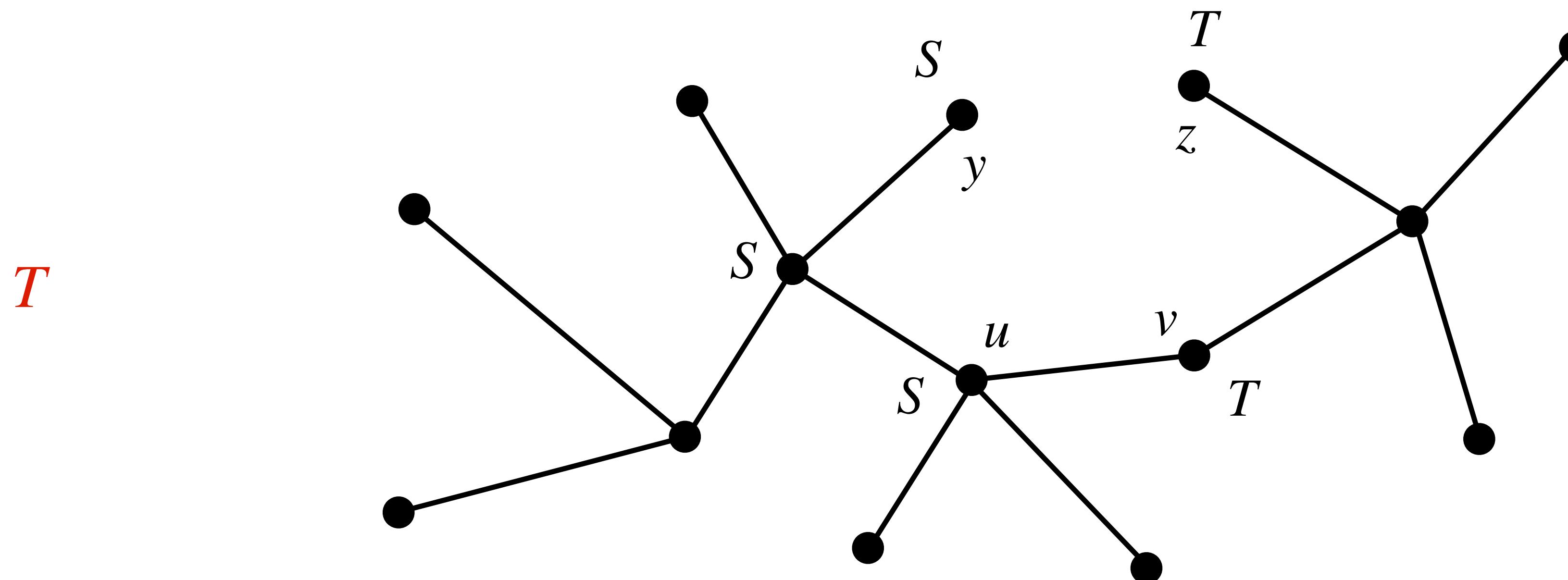
Let T be an MST that does not contain $\{u, v\}$



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

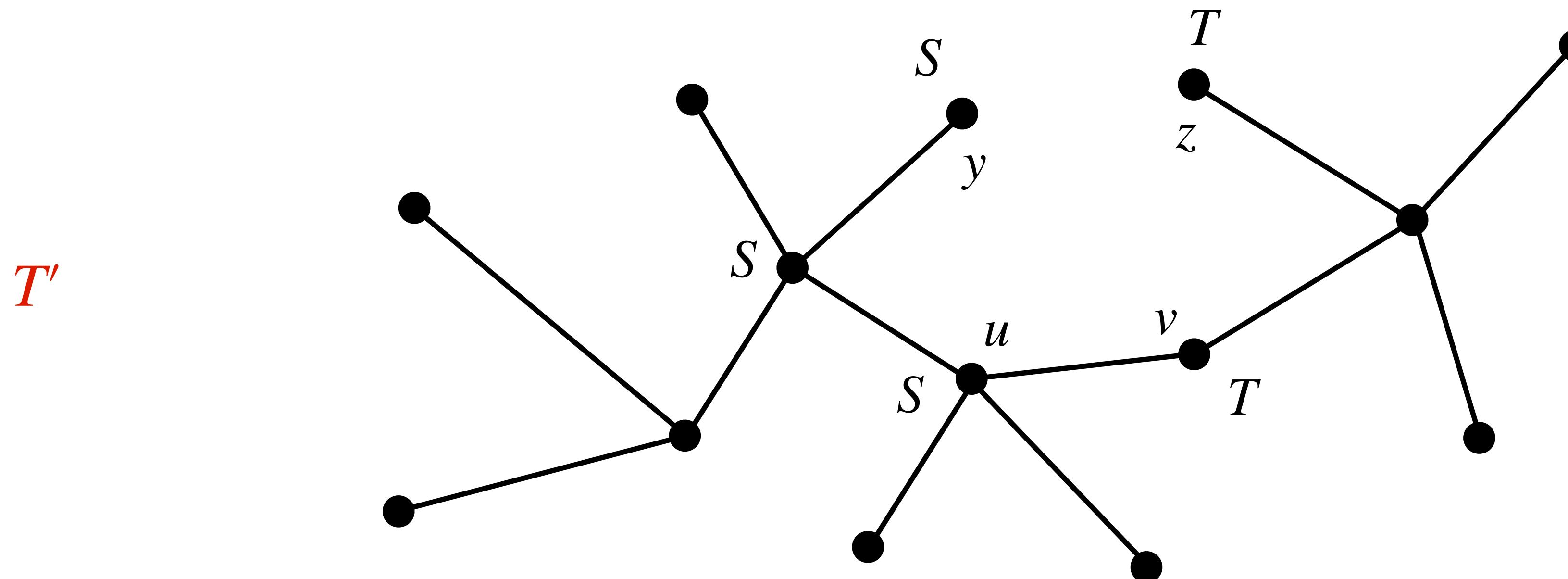
Let T be an MST that does not contain $\{u, v\}$.



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

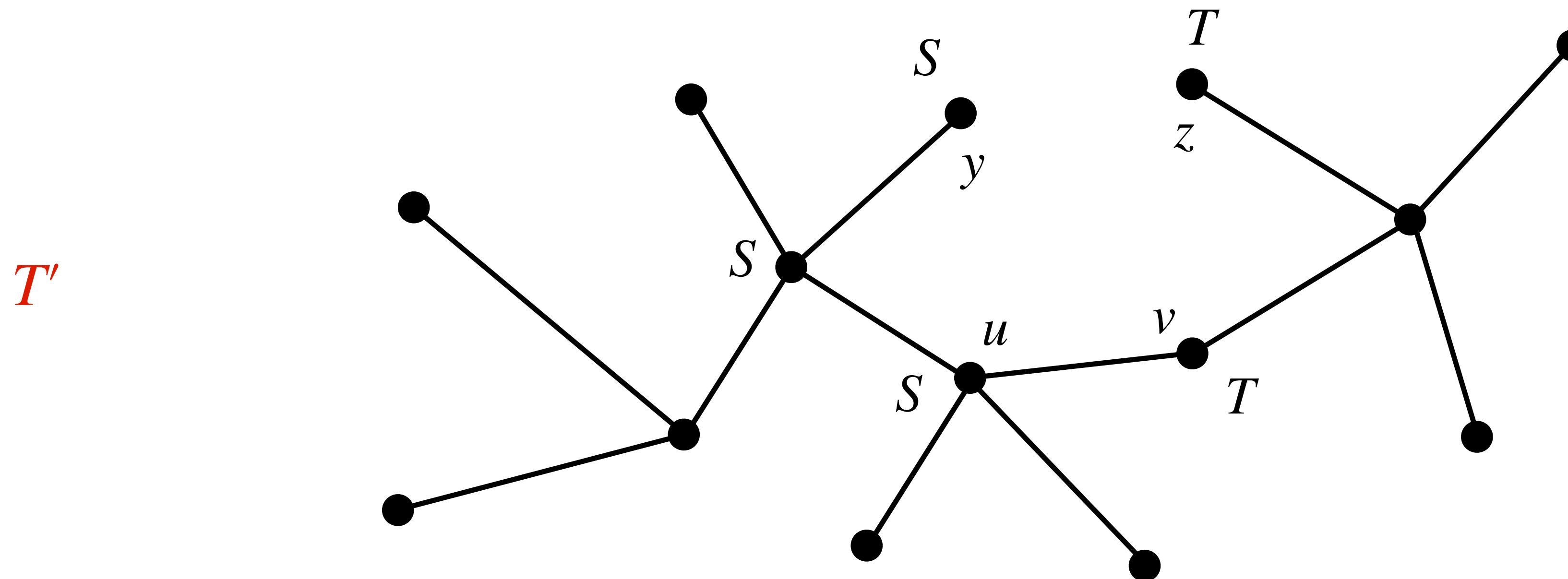
Let T be an MST that does not contain $\{u, v\}$



Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$

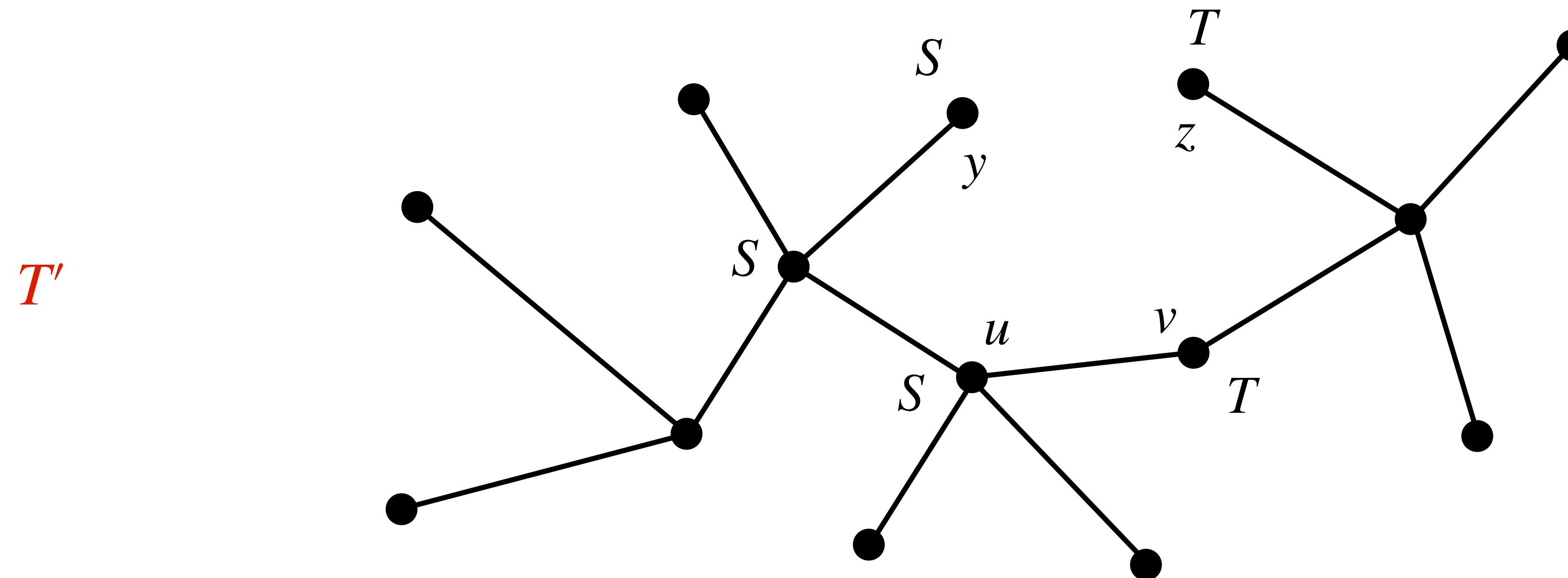


Then, $T' = T - \{y, z\} + \{u, v\}$ will a spanning tree with $w(T') \leq w(T)$.

Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$.



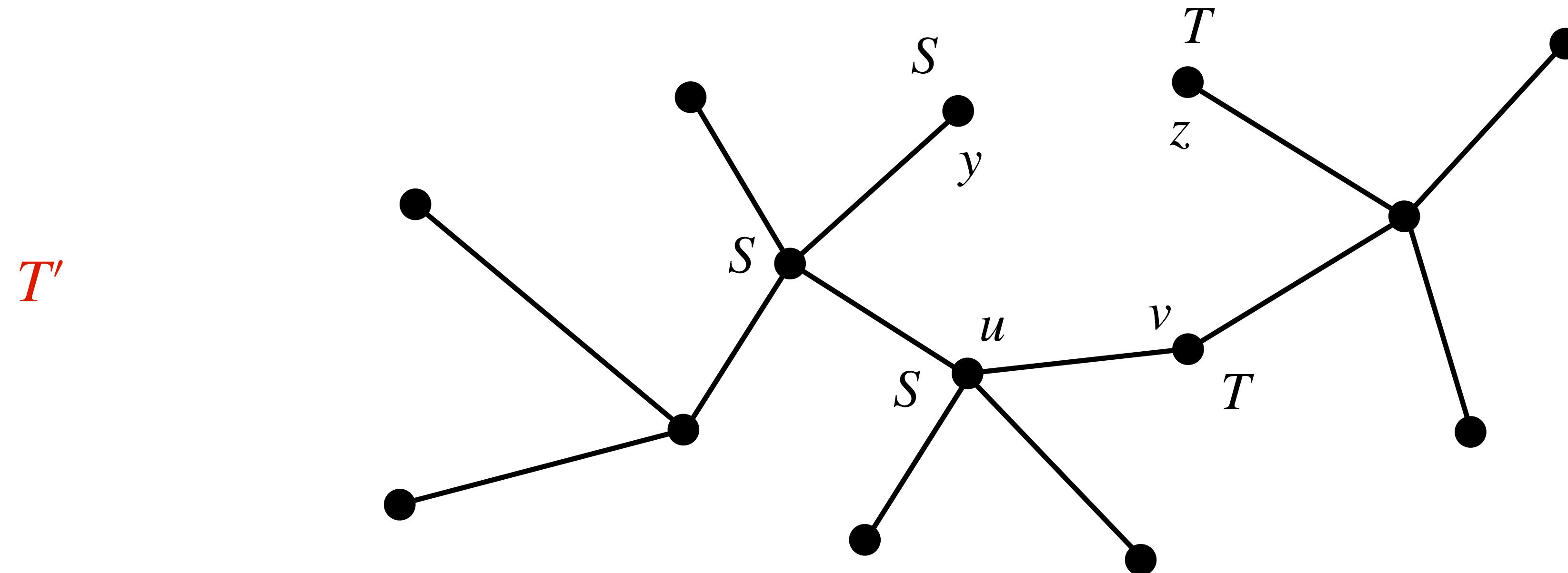
Then, $T' = T - \{y, z\} + \{u, v\}$ will a spanning tree with $w(T') \leq w(T)$.

$w(T') < w(T)$ is not possible as T is an MST.

Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$.



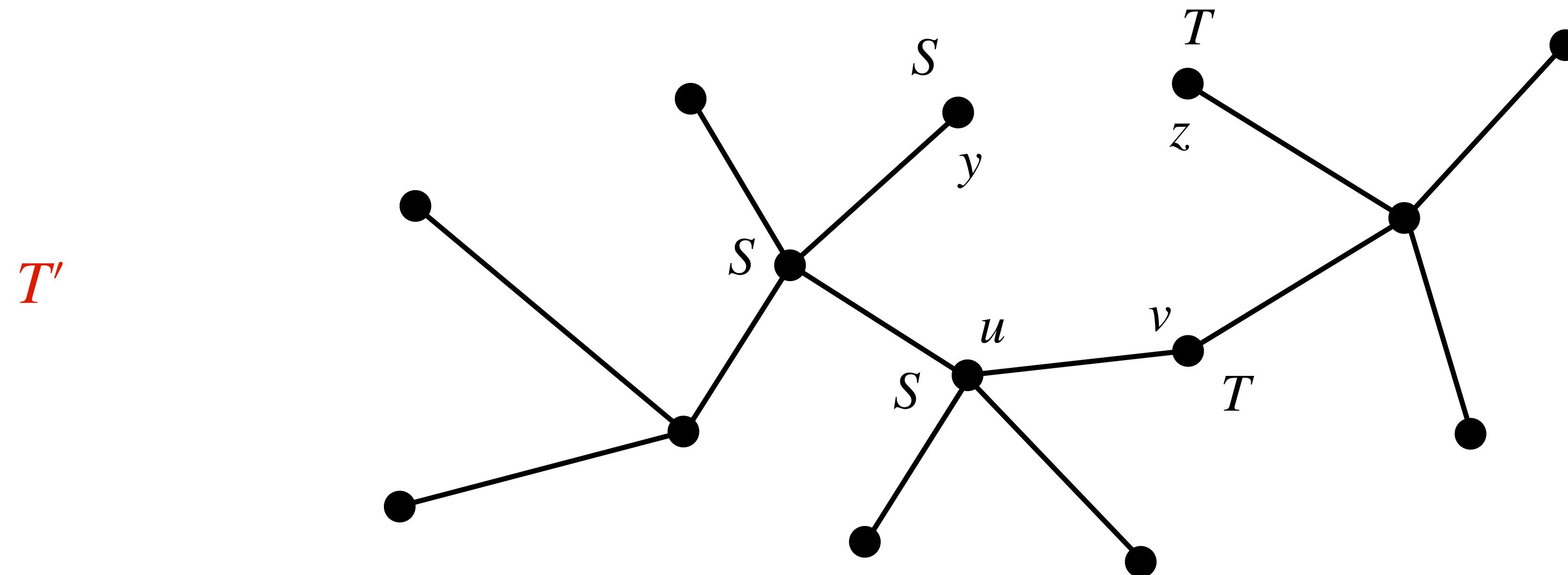
Then, $T' = T - \{y, z\} + \{u, v\}$ will a spanning tree with $w(T') \leq w(T)$.

$w(T') < w(T)$ is not possible as T is an MST. Hence, T' is also an MST.

Cut Connection of MST

Proof: Let $\{u, v\}$ be a least weight edge in the cut-set of C with weight x .

Let T be an MST that does not contain $\{u, v\}$.



Then, $T' = T - \{y, z\} + \{u, v\}$ will a spanning tree with $w(T') \leq w(T)$.

$w(T') < w(T)$ is not possible as T is an MST. Hence, T' is also an MST.

■