
Lecture 29

Greedy: Activity-Selection Problem (contd.), MST
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Greedy Strategy:

Step : Pick .1 a1

Step : Let  was the last picked activity. Then, pick the2 ak

earliest finishing activity in .Sk,n+1 That is, the first

Step : Go to Step , if you can.3 2

activity after , say , so that:ak ai

 and ak . finish ≤ ai . start ai . finish ≤ an+1 . start



Greedy Algorithm for Activity-Selection



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n
 4.        if   and f [k] ≤ s[i] f [i] ≤ s[n + 1]

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n
 4.        if   and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5.            A = A ∪ {ai}

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n
 4.        if   and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5.            A = A ∪ {ai}
 6.                        // resetting the index of the last picked activityk = i

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n
 4.        if   and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5.            A = A ∪ {ai}
 6.                        // resetting the index of the last picked activityk = i
 7.    return A

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n
 4.        if   and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5.            A = A ∪ {ai}
 6.                        // resetting the index of the last picked activityk = i
 7.    return A

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1

and f [i] ≤ s[n + 1]
Will always be true. Hence, can be skipped.



Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1.    A = {a1}
 2.                //  is the index of the last picked activityk = 1 k
 3.    for  to i = 2 n
 4.        if   and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5.            A = A ∪ {ai}
 6.                        // resetting the index of the last picked activityk = i
 7.    return A

Start and finish time of  activities (with dummy activities  and )n + 2 a0 an+1

Time Complexity:  Θ(n)

and f [i] ≤ s[n + 1]
Will always be true. Hence, can be skipped.
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Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to 
subproblems.

Greedy Choice Property: A globally optimal solution can be constructed by making locally 

optimal (greedy) choices.

If , then ai+1 ∈ Ai,j ci,j = ci,i+1 + ci+1,j + 1

Earliest finishing activity in  will be part of some .Si,j Ai,j
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How to Use Greedy?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Show that by making a greedy choice you don’t need to solve all the subproblems.

• Show that it is safe to make a greedy choice.

• Develop the algorithm that implements the greedy strategy. 

Solving a problem using Greedy usually takes five steps:

Note: In practice, one can directly present a greedy algorithm, skipping the above steps..
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Example:

Note: We will represent an MST as a set of edges.

Input: An undirected, weighted and connected graph .G = (V, E, w)

Output: A spanning tree   of , such that   is minimised.G′￼ = (V, E′￼) G w(E′￼) = ∑
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Defn: A cut  of a graph C = (S, T) G = (V, E)

Example:

S

T

is a partition of  in two subsets  and .V S T = V − S
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The cut-set of a cut  is the set of edges that have one endpoint in  and other in .C = (S, T) S T

The cut-set for cut  is (S, T) {{u, v}, {q, v}, {y, z}}
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Lemma: Let  be a cut of an undirected, weighted and connected graph .C = (S, T) G = (V, E, w)
If  is the least weight edge in the cut-set of ,e C

Proof: On the next slide.

then  is part of some MST of .e G
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Let  be an MST that does not contain .T {u, v}
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Let  be an MST that does not contain .T {u, v}

u v
S
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S T

Then,  will a spanning tree with .T′￼ = T − {y, z} + {u, v} w(T′￼) ≤ w(T)

y z

T′￼

 is not possible as  is an MST.w(T′￼) < w(T) T Hence,  is also an MST.T′￼

T



Cut Connection of MST
Proof: Let  be a least weight edge in the cut-set of  with weight .{u, v} C x

Let  be an MST that does not contain .T {u, v}

u v
S

S

S T

Then,  will a spanning tree with .T′￼ = T − {y, z} + {u, v} w(T′￼) ≤ w(T)

y z

T′￼

 is not possible as  is an MST.w(T′￼) < w(T) T Hence,  is also an MST.T′￼ ◼
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