
Lecture 29

Greedy: Activity-Selection Problem (contd.), MST

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

Let’s try to find using greedy choices!A0,12

Greedy Algorithm for Activity-Selection

A0,12

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12∅

∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

∅

∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

∅

∅

∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Why (or , ,) must be ?A4,8 A0,1 A1,4 A8,11 ∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

If contains some activity, then we would A4,8

Why (or , ,) must be ?A4,8 A0,1 A1,4 A8,11 ∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

If contains some activity, then we would A4,8
have picked that activity instead of for .a8 A4,12

Why (or , ,) must be ?A4,8 A0,1 A1,4 A8,11 ∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Step : Let was the last picked activity. Then, pick the2 ak

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Step : Let was the last picked activity. Then, pick the2 ak

earliest finishing activity in .Sk,n+1

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Step : Let was the last picked activity. Then, pick the2 ak

earliest finishing activity in .Sk,n+1 That is, the first

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Step : Let was the last picked activity. Then, pick the2 ak

earliest finishing activity in .Sk,n+1 That is, the first

activity after , say , so that:ak ai

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Step : Let was the last picked activity. Then, pick the2 ak

earliest finishing activity in .Sk,n+1 That is, the first

activity after , say , so that:ak ai

 and ak . finish ≤ ai . start ai . finish ≤ an+1 . start

Greedy Algorithm for Activity-Selection

A0,12

 A0,1 ∪ {a1} ∪ A1,12

 A1,4 ∪ {a4} ∪ A4,12

 A4,8 ∪ {a8} ∪ A8,12

 A8,11 ∪ {a11} ∪ A11,12

∅

∅

∅

∅ ∅

Greedy Strategy:

Step : Pick .1 a1

Step : Let was the last picked activity. Then, pick the2 ak

earliest finishing activity in .Sk,n+1 That is, the first

Step : Go to Step , if you can.3 2

activity after , say , so that:ak ai

 and ak . finish ≤ ai . start ai . finish ≤ an+1 . start

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n
 4. if and f [k] ≤ s[i] f [i] ≤ s[n + 1]

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n
 4. if and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5. A = A ∪ {ai}

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n
 4. if and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5. A = A ∪ {ai}
 6. // resetting the index of the last picked activityk = i

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n
 4. if and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5. A = A ∪ {ai}
 6. // resetting the index of the last picked activityk = i
 7. return A

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n
 4. if and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5. A = A ∪ {ai}
 6. // resetting the index of the last picked activityk = i
 7. return A

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

and f [i] ≤ s[n + 1]
Will always be true. Hence, can be skipped.

Greedy Algorithm for Activity-Selection

 Activity-Selection(s, f, n + 2)
 1. A = {a1}
 2. // is the index of the last picked activityk = 1 k
 3. for to i = 2 n
 4. if and f [k] ≤ s[i] f [i] ≤ s[n + 1]
 5. A = A ∪ {ai}
 6. // resetting the index of the last picked activityk = i
 7. return A

Start and finish time of activities (with dummy activities and)n + 2 a0 an+1

Time Complexity: Θ(n)

and f [i] ≤ s[n + 1]
Will always be true. Hence, can be skipped.

When to Use Greedy?

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

If , then ai+1 ∈ Ai,j ci,j = ci,i+1 + ci+1,j + 1

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Greedy Choice Property: A globally optimal solution can be constructed by making locally

optimal (greedy) choices.

If , then ai+1 ∈ Ai,j ci,j = ci,i+1 + ci+1,j + 1

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Greedy Choice Property: A globally optimal solution can be constructed by making locally

optimal (greedy) choices.

If , then ai+1 ∈ Ai,j ci,j = ci,i+1 + ci+1,j + 1

Earliest finishing activity in will be part of some .Si,j Ai,j

How to Use Greedy?

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

• Find the optimal substructure.

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Show that by making a greedy choice you don’t need to solve all the subproblems.

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Show that by making a greedy choice you don’t need to solve all the subproblems.

• Show that it is safe to make a greedy choice.

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Show that by making a greedy choice you don’t need to solve all the subproblems.

• Show that it is safe to make a greedy choice.

• Develop the algorithm that implements the greedy strategy.

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Show that by making a greedy choice you don’t need to solve all the subproblems.

• Show that it is safe to make a greedy choice.

• Develop the algorithm that implements the greedy strategy.

Solving a problem using Greedy usually takes five steps:

Note: In practice, one can directly present a greedy algorithm, skipping the above steps..

Minimum Spanning Tree

Minimum Spanning Tree
MST:

Minimum Spanning Tree
MST:

Input: An undirected, weighted and connected graph .G = (V, E, w)

Minimum Spanning Tree
MST:

Input: An undirected, weighted and connected graph .G = (V, E, w)

Output: A spanning tree of , such that is minimised.G′￼ = (V, E′￼) G w(E′￼) = ∑
(u,v)∈E′￼

w(u, v)

Minimum Spanning Tree
MST:

Example:

Input: An undirected, weighted and connected graph .G = (V, E, w)

Output: A spanning tree of , such that is minimised.G′￼ = (V, E′￼) G w(E′￼) = ∑
(u,v)∈E′￼

w(u, v)

Minimum Spanning Tree
MST:

Example:

Input: An undirected, weighted and connected graph .G = (V, E, w)

Output: A spanning tree of , such that is minimised.G′￼ = (V, E′￼) G w(E′￼) = ∑
(u,v)∈E′￼

w(u, v)

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Minimum Spanning Tree
MST:

Example:

Input: An undirected, weighted and connected graph .G = (V, E, w)

Output: A spanning tree of , such that is minimised.G′￼ = (V, E′￼) G w(E′￼) = ∑
(u,v)∈E′￼

w(u, v)

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

MST

Minimum Spanning Tree
MST:

Example:

Note: We will represent an MST as a set of edges.

Input: An undirected, weighted and connected graph .G = (V, E, w)

Output: A spanning tree of , such that is minimised.G′￼ = (V, E′￼) G w(E′￼) = ∑
(u,v)∈E′￼

w(u, v)

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

MST

Cut Connection of MST

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E)

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E) is a partition of in two subsets and .V S T = V − S

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E) is a partition of in two subsets and .V S T = V − S
The cut-set of a cut is the set of edges that have one endpoint in and other in .C = (S, T) S T

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E)

Example:

is a partition of in two subsets and .V S T = V − S
The cut-set of a cut is the set of edges that have one endpoint in and other in .C = (S, T) S T

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E)

Example:

is a partition of in two subsets and .V S T = V − S

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

The cut-set of a cut is the set of edges that have one endpoint in and other in .C = (S, T) S T

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E)

Example:

S

T

is a partition of in two subsets and .V S T = V − S

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

The cut-set of a cut is the set of edges that have one endpoint in and other in .C = (S, T) S T

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E)

Example:

S

T

is a partition of in two subsets and .V S T = V − S

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

The cut-set of a cut is the set of edges that have one endpoint in and other in .C = (S, T) S T

Cut Connection of MST

Defn: A cut of a graph C = (S, T) G = (V, E)

Example:

S

T

is a partition of in two subsets and .V S T = V − S

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

The cut-set of a cut is the set of edges that have one endpoint in and other in .C = (S, T) S T

The cut-set for cut is (S, T) {{u, v}, {q, v}, {y, z}}

Cut Connection of MST

Cut Connection of MST

Lemma: Let be a cut of an undirected, weighted and connected graph .C = (S, T) G = (V, E, w)

Cut Connection of MST

Lemma: Let be a cut of an undirected, weighted and connected graph .C = (S, T) G = (V, E, w)
If is the least weight edge in the cut-set of ,e C

Cut Connection of MST

Lemma: Let be a cut of an undirected, weighted and connected graph .C = (S, T) G = (V, E, w)
If is the least weight edge in the cut-set of ,e C then is part of some MST of .e G

Cut Connection of MST

Lemma: Let be a cut of an undirected, weighted and connected graph .C = (S, T) G = (V, E, w)
If is the least weight edge in the cut-set of ,e C

Proof: On the next slide.

then is part of some MST of .e G

Cut Connection of MST

Cut Connection of MST
Proof:

Cut Connection of MST
Proof:

S T

u
v

Cut Connection of MST
Proof:

S T

u
vx

Cut Connection of MST
Proof:

S T

u
vx

Let be a least weight edge in the cut-set of with weight .{u, v} C x

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v} If we cannot pick such a we are done.T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S T

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S T

y z

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S T≥ x

y z

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S T≥ x

y z

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S T

y z

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u vT

S

S

S T

y z

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u v
S

S

S T

y z

T′￼

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u v
S

S

S T

Then, will a spanning tree with .T′￼ = T − {y, z} + {u, v} w(T′￼) ≤ w(T)

y z

T′￼

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u v
S

S

S T

Then, will a spanning tree with .T′￼ = T − {y, z} + {u, v} w(T′￼) ≤ w(T)

y z

T′￼

 is not possible as is an MST.w(T′￼) < w(T) T

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u v
S

S

S T

Then, will a spanning tree with .T′￼ = T − {y, z} + {u, v} w(T′￼) ≤ w(T)

y z

T′￼

 is not possible as is an MST.w(T′￼) < w(T) T Hence, is also an MST.T′￼

T

Cut Connection of MST
Proof: Let be a least weight edge in the cut-set of with weight .{u, v} C x

Let be an MST that does not contain .T {u, v}

u v
S

S

S T

Then, will a spanning tree with .T′￼ = T − {y, z} + {u, v} w(T′￼) ≤ w(T)

y z

T′￼

 is not possible as is an MST.w(T′￼) < w(T) T Hence, is also an MST.T′￼ ◼

T

