Lecture 29

Greedy: Activity-Selection Problem (contd.), MST
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Greedy Strategy:
Ap,12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the
Apr Ula } UA earliest finishing activity in 5, , . ;. That is, the first
j \ activity after a;, say a;, so that:
% Aj4U{ay; UAy a, .finish < a;. start and q; . finish < a,_ . start
j & Step 3: Go to Step 2, if you can.
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Start and finish time of n + 2 activities (with dummy activities a, and a, . )
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Activity-Selection(s, f,n + 2)
A — {al}
k=1 // k is the index of the last picked activity

1
2
3. fori=2ton

4. if flk] < s[i] andfli] <sn+1] <
S

6

7

Will always be true. Hence, can be skipped.

k=1 // resetting the index of the last picked activity

return A

Time Complexity: O(n)
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When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Greedy Choice Property: A globally optimal solution can be constructed by making locally
optimal (greedy) choices.

Earliest finishing activity in 5; ; will be part of some A, ..
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How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

® Find the optimal substructure.
® Recursively define the value of optimal solution.

® Show that by making a greedy choice you don’t need to solve all the subproblems.

® Show that it is safe to make a greedy choice.

® Develop the algorithm that implements the greedy strategy.

Note: In practice, one can directly present a greedy algorithm, skipping the above steps..
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Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Output: A spanning tree G = (V. £') ot G, such that w(£") = Z w(u, v) is minimised.
(u,v)eL’

Example:

MST

Note: We will represent an MST as a set of edges.
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Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Example:

The cut-set for cut (S, 7) is {{u, v}, {g, v}, {v,z}}
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Lemma: Let C = (5, 7) be a cut of an undirected, weighted and connected graph G = (V, E, w).
f e is the least weight edge in the cut-set of C, then ¢ is part of some MST of G.

Proof: On the next slide.
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