Lecture 29

Greedy: Activity-Selection Problem (contd.), MST

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

10

11

12

10

11

12

14

12

16

16

16

Greedy Algorithm for Activity-Selection

i 7189 10]11]12
s, 6 |7 |82 |12]16
f 1011]12]| 14|16 |16

Let’s try to find A |, using greedy choices!

AO,12

/

Greedy Algorithm for Activity-Selection

i 7189 10]11]12
s, 6 |7 |82]|12]16
f 10|11]12]14 |16 | 16

AO,12

/

AprUila} UA

Greedy Algorithm for Activity-Selection

i 7189 10]11]12
s, 6 |7 |82]|12]16
f 10|11]12]14 |16 | 16

Greedy Algorithm for Activity-Selection

AprUila} UA

/

%,

AO,12

/

i 7189 10]11]12
s, 6 |7 |82]|12]16
f 10|11]12]14 |16 | 16

Greedy Algorithm for Activity-Selection

AprUila} UA

/

%,

AO,12

/

\

i 7189 10]11]12
s, 6 |7 |82]|12]16
f 10|11]12]14 |16 | 16

AjaUas} VA,

Greedy Algorithm for Activity-Selection

AprUila} UA

/

%,

AO,12

/

\

i 7189 10]11]12
s, 6 |7 |82]|12]16
f 10|11]12]14 |16 | 16

AjaUas} VA,

/

%,

Greedy Algorithm for Activity-Selection

A t 10 7189 [10]11]12
0,12 : - | | | | | |
/ s | 0 6 (7 |8]2 |12]16
Ag U {a} UA, |, fi |0 101112141616

/

%,

\

Ar4Uiay} UAL

/

%,

\

A4,8 U {ag} U Ag,lz

Greedy Algorithm for Activity-Selection

AO,12

/

AprUila} UA

\

AjaUas} VA,

/

%,

/

%,

%,

Agg U {ag} UAg

/

\

] 7 1819 |10 |11 |12
S, 6 (7 | 8 | 2 [12 |16
f; 10 |11 | 12 | 14 | 16 | 16

Greedy Algorithm for Activity-Selection

AO,12

/

AprUila} UA

\

AjaUas} VA,

/

%,

/

%,

%,

i o 1] 2 7189 |10]11]12
s; 1o |1 |3 6 (7|8 |2 |12]16
1o 4|5 10 |11 | 12| 14 | 16 | 16

\

Agg U {ag} UAg

/

\

Ag i Ulant VA »

Greedy Algorithm for Activity-Selection

AO,12

/

AprUila} UA

\

AjaUas} VA,

/

%,

/

%,

%,

Agg U {ag} UAg

/

i |0 7189 |10]11]12
5; |0 6 (7|8 |2 |12]16
flo 10 |11 | 12| 14 | 16 | 16

\

Ag i Ulant VA »

/

%,

\

Greedy Algorithm for Activity-Selection

AO,12

/

AprUila} UA

\

AjaUas} VA,

/

%,

/

%,

%,

Agg U {ag} UAg

/

i |0 2 7189 |10]11]12
5; |0 3 6 (7|8 |2 |12]16
flo 5 10 |11 [12| 14 | 16 | 16

\

Ag i Ulant VA »

/

%,

\

\

%,

Greedy Algorithm for Activity-Selection

AO,12

/

AprUila} UA

\

AjaUas} VA,

/

%,

/

%,

%,

Agg U {ag} UAg

/

i |0 2 7189 |10]11]12
5; |0 3 6 (7|8 |2 |12]16
flo 5 10 |11 [12| 14 | 16 | 16

\

Ag i Ulant VA »

/

%,

\

\

%,

Why A, g (or Ag 1, Aj 4, Ag 1) must be @?

Greedy Algorithm for Activity-Selection

i o1 | 2|3 4]5 6 (7 | 8 (9 10|11 |12
AO,12 : : : 1 : 1 1 : : : : 1 1
J s;s o (L 3 [0 (S| 3|S5 (6]|7/|8]2|[12]16
Ay U g} UA, fiito4 |56 (7] 9|9 (10|11 (12| 14 (16 | 16
% ApaUtagt UAy
/ & Why A, s (or Ay i, Aj 4. Ag 1) must be @7
@ ’ ’ ’ ’
;4’8 U lagt U A&C If A4 ¢ contains some activity, then we would
2 Ag11 U tayt UAy o

/ \

% D

Greedy Algorithm for Activity-Selection

i o[1|2 3] 4|35 6 (7 |89 (10| 11 |12
AO,12 : : : 1 : 1 1 : : : : 1 1
J s;s 1oL [3105 |3(S5S([6 | 7|8]2 (12]16
Ag U {a;} UA| iltol4 (516|799 ([10|11]12] 14 (16 | 16
% Ap4Uiay UAy o
/ & Why A, s (or Ay i, Aj 4. Ag 1) must be @7
@ ’ ’ ’ ’
Aqg U 1ds) U g 1o If A4 ¢ contains some activity, then we would
/ \4 have picked that activity instead of ag for A, |».
2 Ag 11U ar YA o

/ \

% D

Greedy Algorithm for Activity-Selection

AO,12

/

AprUila} UA

/ \

% A4 Ulay VAL,
%, A4,8 U {ag} UA8,12
% Ag11 U lant UA

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:

Ap12
Ap U {alj} UAl’f
@j Aj4Uiay; UAy

/
2 ;4,8 U {>8} U Ag 12
\
2 Ag iU iant VA o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:

Ao, 12 Step 1: Pick ;.
Ap U {alj} UAl’f
@j Aj4Utas} UAL

/
2 ;4,8 U {>8} U Ag 12
\
2 Ag 11U iayy UAy po

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:
Ao 12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the
Apa Y iaj UAj o,
%, Aj4Utas} UAL
2 Ayg U ag} U Ag s
2 Ag 11V ay iy UA 1o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:
Ao 12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the
AO,I U {al} U A1,12 earliest flﬂlShlng aCtiVity N Sk,n+1'
%, Aj4Utas} UAL
2 Ayg U ag} U Ag s
2 Ag 11V ay iy UA 1o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:
Ao 12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the
Apr Ula } UA earliest finishing activity in 5, , . ;. That is, the first
% Aj4Uiayr UA,
2 Agg U lagt UAg 1
2 Ag11 Y tan i UAp o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:
AO,12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the

Apr Ula } UA earliest finishing activity in 5, , . ;. That is, the first
J \ activity after a;, say a;, so that:
% Ap4Uiay UAy o

& Ayg U lag) UAg

2 Ag11 U tayt UAy o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:
Ap,12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the

Apr Ula } UA earliest finishing activity in 5, , . ;. That is, the first
j \ activity after a;, say a;, so that:
% Aj4U{ay; UAy a, .finish < a;. start and q; . finish < a,_ . start

& Ayg U lag) UAg

Z Ag11 U tat UA o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Strategy:
Ap,12 Step 1: Pick ;.
J Step 2: Let a;, was the last picked activity. Then, pick the
Apr Ula } UA earliest finishing activity in 5, , . ;. That is, the first
j \ activity after a;, say a;, so that:
% Aj4U{ay; UAy a, .finish < a;. start and q; . finish < a,_ . start
j & Step 3: Go to Step 2, if you can.
Z Agg U tag} UAg
2 Ag11 U tayt UAy o

/ \

% D

Greedy Algorithm for Activity-Selection

Greedy Algorithm for Activity-Selection

Activity-Selection(s, f,n + 2)

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)
1. A — {al}

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)
1. A — {al}
2. k=1 // k is the index of the last picked activity

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)
1. A — {al}
2. k=1 // k is the index of the last picked activity

3. fori=2ton

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)

1. A={a}

2. k=1 // k is the index of the last picked activity
3. fori=2ton
4

if flk] < sli] and fli] < s[n + 1}

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)

1. A={a}

2. k=1 // k is the index of the last picked activity
3. fori=2ton

4, if flk] < sli] and fli] < s[n + 1}

5. A=AU{a;}

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)
A — {al}
k=1 // k is the index of the last picked activity

fori =2ton
if flk] < sli] and fli] < s[n + 1}
A=AU{a;}
k=1 // resetting the index of the last picked activity

ool gn B

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)

1. A={a]

2. k=1 // k is the index of the last picked activity

3. fori=2ton

4, if flk] < sli] and fli] < s[n + 1}

5 A=AU{a;}

6 k=1 // resetting the index of the last picked activity
7

return A

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)
A — {al}
k=1 // k is the index of the last picked activity

1
2
3. fori=2ton

4. if flk] < s[i] andfli] <sn+1] <
S

6

7

Will always be true. Hence, can be skipped.
k=1 // resetting the index of the last picked activity

return A

Greedy Algorithm for Activity-Selection

Start and finish time of n + 2 activities (with dummy activities a, and a, .)

/

Activity-Selection(s, f,n + 2)
A — {al}
k=1 // k is the index of the last picked activity

1
2
3. fori=2ton

4. if flk] < s[i] andfli] <sn+1] <
S

6

7

Will always be true. Hence, can be skipped.

k=1 // resetting the index of the last picked activity

return A

Time Complexity: O(n)

When to Use Greedy?

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Greedy Choice Property: A globally optimal solution can be constructed by making locally
optimal (greedy) choices.

When to Use Greedy?

Greedy is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Greedy Choice Property: A globally optimal solution can be constructed by making locally
optimal (greedy) choices.

Earliest finishing activity in 5; ; will be part of some A, ..

How to Use Greedy?

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

® Find the optimal substructure.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

® Find the optimal substructure.

® Recursively define the value of optimal solution.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:
® Find the optimal substructure.
® Recursively define the value of optimal solution.

® Show that by making a greedy choice you don’t need to solve all the subproblems.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:
® Find the optimal substructure.
® Recursively define the value of optimal solution.

® Show that by making a greedy choice you don’t need to solve all the subproblems.

® Show that it is safe to make a greedy choice.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

® Find the optimal substructure.
® Recursively define the value of optimal solution.

® Show that by making a greedy choice you don’t need to solve all the subproblems.

® Show that it is safe to make a greedy choice.

® Develop the algorithm that implements the greedy strategy.

How to Use Greedy?

Solving a problem using Greedy usually takes five steps:

® Find the optimal substructure.
® Recursively define the value of optimal solution.

® Show that by making a greedy choice you don’t need to solve all the subproblems.

® Show that it is safe to make a greedy choice.

® Develop the algorithm that implements the greedy strategy.

Note: In practice, one can directly present a greedy algorithm, skipping the above steps..

Minimum Spanning Tree

Minimum Spanning Tree

MST:

Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Output: A spanning tree G = (V. £') ot G, such that w(£") = 2 w(u, v) is minimised.
(u,v)eL’

Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Output: A spanning tree G = (V. £') ot G, such that w(£") = 2 w(u, v) is minimised.
(u,v)eL’

Example:

Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Output: A spanning tree G = (V. £') ot G, such that w(£") = 2 w(u, v) is minimised.
(u,v)eL’

Example:

Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Output: A spanning tree G = (V. £') ot G, such that w(£") = Z w(u, v) is minimised.
(u,v)eL’

Example:

MST

Minimum Spanning Tree

MST:
Input: An undirected, weighted and connected graph G = (V, E, w).

Output: A spanning tree G = (V. £') ot G, such that w(£") = Z w(u, v) is minimised.
(u,v)eL’

Example:

MST

Note: We will represent an MST as a set of edges.

Cut Connection of MST

Cut Connection of MST

Defn: A cut C = (5,7) ofa graph G = (V, E)

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Example:

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Example:

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Example:

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Example:

Cut Connection of MST

Defn: A cut C = (5,7) of a graph G = (V, E) is a partition of Vin two subsets S and 7'=V — §.
The cut-set of a cut C = (5, 7)) is the set of edges that have one endpoint in $ and otherin 7.

Example:

The cut-set for cut (S, 7) is {{u, v}, {g, v}, {v,z}}

Cut Connection of MST

Cut Connection of MST

Lemma: Let C = (5, 7) be a cut of an undirected, weighted and connected graph G = (V, E, w).

Cut Connection of MST

Lemma: Let C = (5, 7) be a cut of an undirected, weighted and connected graph G = (V, E, w).
It e is the least weight edge in the cut-set of C,

Cut Connection of MST

Lemma: Let C = (5, 7) be a cut of an undirected, weighted and connected graph G = (V, E, w).
f e is the least weight edge in the cut-set of C, then ¢ is part of some MST of G.

Cut Connection of MST

Lemma: Let C = (5, 7) be a cut of an undirected, weighted and connected graph G = (V, E, w).
f e is the least weight edge in the cut-set of C, then ¢ is part of some MST of G.

Proof: On the next slide.

Cut Connection of MST

Cut Connection of MST

Proof:

Cut Connection of MST

Proof:

Cut Connection of MST

Proof:

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7" be an MST that does not contain {1, V}. € If we cannot pick such a 7 we are done.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

T/

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

T/

Then, T"=T — {y,z} + {u, v} will a spanning tree with w(7") < w(T).

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

T/

Then, T"=T — {y,z} + {u, v} will a spanning tree with w(7") < w(T).
w(1") < w(T') is not possible as 7"is an MST.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

T/

Then, T"=T — {y,z} + {u, v} will a spanning tree with w(7") < w(T).
w(1") < w(T') is not possible as 7"is an MST. Hence, 1" is also an MST.

Cut Connection of MST

Proof: Let {1, v} be a least weight edge in the cut-set of C with weight x.

Let 7 be an MST that does not contain {u, v}.

T/

Then, T"=T — {y,z} + {u, v} will a spanning tree with w(7") < w(T).
w(1") < w(T') is not possible as 7"is an MST. Hence, 1" is also an MST.

